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Abstract

Title: Theoretical and Numerical Conformal Mapping

Author: Moshe Dubiner

Submited to the Department of Mathematics on January 1981,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

Many numerical simulations, in particular that of a two

dimensional incompressible free boundary flow, can be done by

performing conformal mapping of the flow domain onto a half

plane. The detailed behaviour of the conformal mapping, which

is closely related to the detailed behaviour of the solution

to a two dimensional Dirichlet problem, is analysed. A

uniform asymptotic expansion to the conformal map of a slender

domain is constructed. Its salient features are explained and

later generalized by theorems valid for arbitrary domains.

It is demonstrated that the conformal map onto a disk can not

expand distances beyond a certain bound but can be extremely

contracting. The logarithm of its derivative is shown to be

well behaved. A general perturbation formula from an

arbitrary domain to an arbitrary domain which preserves many

features of the infinitesmal perturbation formula is derived,

and its use is demonstrated on a fractal. These results
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utilize two estimates, correct up to a constant factor, of the

conformal distance and the location of its geodesics.

The above mentioned theory motivates a new numerical

method for the direct computation of the conformal map. When

the domain's boundary is resolved by N points our method2
requires O(N) memory locations and O(N ) arithmetic

operations. Up to a constant factor the memory requirement is

the best possible and the operations number is the lowest

achieved so far. Both are an O(N) improvement on the only

other direct numerical conformal mapping method which can

handle complicated domains. Moreover our numerical

approximation has the same "exponential decay of influence" as

that of the exact problem.

Thesis Supervisor: Steven A. Orszag.

Title: Professor of Applied Mathematics.
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0. Introduction.

Many two dimensional physical problems require the

solution of Laplace's equation in a complicated domain 2 ..

One way to solve these problems is to conformally map 12 onto

the unit disk 3((O,1) or a half plane W-0} . Once that is

done the Poisson kernel provides the solution to the Dirichlet

or restricted Neumann boundary value problems. Hilbert's

generalization solves a mixture of the two where each applies

on part or the boundary (but it doesn't solve the general

Neumann boundary condition). Conversely any method of

computing the Dirichlet or Neumann solution can be used to

calculate the conformal map (see Theorem 5.3) but there is

little reason to do it.

There exists a unique conformal mapping i of f4 onto

0(041 up to specifying and for some

urfl. Classical complex analysis demonstrates that on the

boundary D 6 is about as smooth as /2 is and, of course,

is analytic inside. However, [-,)44 is ill posed in

terms of any reasonable norm of L even when ( is restricted

to be well away from Pi1. For example take

a (0.1

where the notation means ~4. ., tCil'2.jIIEDfo,1 •

6



It is a smooth domain which looks like an ellipse inflated

inside a rectangle centered at the origin of length 7.1 and

width z2 s~i~ L But the conformal mapping taking
7r

12 to (ol-L and 0 to 0 is

(0.2)

so

D 4 uj r (0.3)

zt, 14%) Ni-ZO At

which decreases exponentially in / and equals 0.000000603

for 1=10 I The curvature of '.t2 near the ends relative to

4's diameter is 0Yf1 but it is innocent of (0.3). The

eccentric cigar shape of n2 is to blame and the same would

happen for the smooth paddle-shaped domain of Figure 0.1.

Except near the ends example (0.1) is a slender domain.

A domain £2 is called F slender with F small (say, o<<- )

iff Z12\-CoI is composed of two connected components "M0 and

WL such that for each Wc

x(0.4)

il O(t (0.5)
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where Aa.Wi± minimizes INAo- and K(u 9Wal is WO's

curvature at M" . Condition (0.4) requires .V to be nearly

straight and condition (0.5) requires V\P to be nearly

parallel to . Parametrize NV, by its arc length A

starting from an arbitrary fixed point. Each u1 can be

uniquely written as

4A vWO 4(,k17 ,k(. I "I"4 rrA I OC < ((4(0.6)

where A(A) is the inside unit normal at WA(A) and XQ) is

the distance of AUrj from W0g(4) along the direction A(A) so

that W .&I,.kAI t'U- . Let us normalize the coordinate

system (A,,4) in an approximately isotropic way

The map from -a onto = [ is quasi-

conformal with eccentricrity bounded by CF (see [7] for'

definition). Let Y be the exact conformal map from o onto

sending W0 :-? to :too respectively. Clearly

I T -. / Y (IA )(0.8)

conformally maps Q onto 10/i) and so does

8



b( 4 ' 1 = r - 60 (0.9)

and it sends 0911. to 0 . The real number C is determined by

>0 (0.10)

where'i. denotes differentiation with respect to the first

variable. Formula (0.8) is inserted in (0.9) and results in

lot (P) (0.11)

and (0.ii)'s derivative is

'D _e__ i1L ole (0. 12)

Define PA IV) by replacing with in (0.12) * It is a

quasi-conformal map from -a onto O(N, t of at most CE

eccentricity sending 0 to 0. Hence V1.J) is expected to

be close to V / in some sense. Indeed formula (3.3) and

others prove that

A rdA Q) 6 ( 4, Q I ~C FI (A v1 (0.*13)

where

9



mI

1 (0.14)

is defined on nonanalytic functions. Let us press on with the

heuristics. Formula (0.12) for shows that

f

r ire) (0.15)

A1 -i41 T, q) -(FO ,VA/P (44uItW67 ~ (1) (0.16)

where a[,, is the change in angle of W0o between 0: WoL [VO]

and Is projection on W0  WC4"fJ • Thusglobally /

performs reasonable rotation but extreme scaling. In

retrospect it should not be surprising because conformal maps

are defined by being locally angle preserving with no scaling

restrictions attached.

Formula (0.16) is easy to interpret. It obviously holds

(up to translation in Al - (4) depending on its

normalization) for W-Da , where Q. i's a general domain. Thus

(0.16) states that for slender domains

1 I(0.17)
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where the notation means f 1  6'& -A 2)vd((4#(J4C and

ZeZ.Q is near 4A , say the closest boundary point. The result

(0.17) holds in general as proven by Theorem 5.4. Formula

(0.15) is not that easy to generalize. Unlike (0.16), its

right side depends on the structure of 2 between 0 and V.

The first question is: what does 'between' mean in general?

In order to gain some insight let us consider a more

complicated example.

Let O< '<<i

The domain (0.18) has the following property. Any domain £2

is said to be a £>O conjugation of the domains fA-,I iff

for any (AF- there exists a VrI and two complex numbers 0,/$

such that

iAc-A ~(m) a AVIt (0. 19)

A s (0.20)

the distance from JtN) toll relative to u is defined by

(10.113). The interested reader may prove

11



that any E slender domain is a cE conjugation of

A~<... 4' IC1I 2 t (0.21)

where CO is constant. Domain (0.18) is a CC conjugation of

41.! and

Jt-7'K 4/ '(j4 1 >Qj ](0.22)

Ai= - -f -o} (0.23)

A,, cc i-.i r ] (0.24)

where ao,1 is the closed interval between o and 6. We

have to match the conformal maps from all the A(#A4 I VFL(1

In this case it is easiest to do when considering

, the conformal map from 2(r) onto the half plane 0 (,,4

normalized by

~~~O 2~ 1(.5)

The domain 11M."J is periodic and symmetric so we can limit

ourselves to

12
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t4 066 Tr(0.26)

We start from

6'(C.14su 4)z7 &Wd.4de 1 (0. 27)

Tt is modified to

X >-A T)(0.*28)

: Z4 u/ei'~ ~(0.29)

where

N) (C-En) Lj~ (0.30)

{7r (0.32)

and the exact limitation (0.28) will follow from comparison

with the following formulas. A priori rigorous bounds can be

derived but as usual it is inconvenient. Next

uioA)cC e (0.32)
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(there is no natural normalization). We already know how to

match the P(4,0~4 #A4)l Is where .. tt(ij ajt-6& recall

(0.7p8). They match with (0.28,29) and give

IY-,'j7j> (033

2 IL E (0.34)

where

(4:f#4. a/ (0.35)

Now we can match to (0.33,34) and obtain

I '4~4jJ~'r(0.36)

Similarly, r ,oA is matched to (0.28,29):

IAt it~y-rj c (0.38)
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In particular the maximum and minimum of jI'jC4,o&,fl(v I
are obtained at - -. 'T -7 respectively and

Cr., -0.!(r07- (0.40)

, ~~- (0 . z~.. e ,€.41)

What have we learned from example (0.18)? Figure 0.3

illustrates the direction of information flow (The reverse of

the direction of dependence) which were exhibited while

aaj has been constructed. The situration is quite

special yet we have some grounds to suspect that in general

z 44 , and other functions depend mainly on 17's part

'around' the curve of least Euclidian distance between o and

(A inside n . A close inspection of (0.27-38) reveals that

the above mentioned curve fromot to 4 resembles

, ,(0.42)

The curvces P(kA..,1) are called geodesics because they are

the geodesics of a certain conformally invarient metric
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0,(,(p1 l) of Theorem 1.1. Some geodesics of Ai are

illustrated in Figure 0.4. Notice for any two 4A,fpdt± far

away the most of P(tA#, -,AL is exponentially close to Ai's

axis ot symmetry. Theorem 8.3 demonstrates that in general

the geodesics try to keep away from the boundary.

The connection between geodesics and lines of least

Euclidian distance is proven in Theorem 9.2.

Now that we have some idea on what 'between' and

means it is time to find out how the rest of 0. affects

L' P44,of ) and other quantities. For that purpose

let us return to S slender domains and compute a next order

correction to (0.7). We start by calculating DR7. The

gradient ot (0.6) is

and of (0.7)

6( 1(4c) T 4~. 7F. ', d .~ (0.44)

Formulas (0.43,44) combine into

16



A
" .A .. (0.45)

Define the correction furnction

(0.46)

Then

A

.44 i I o ~ 0(0.48)

where

A4A ) (0.49)4

Notice that a2 is C(t) slender iff

1Y/ I f* c (0.50)

__ _ _ _ __ _.__ __ _ _ _ _ __ _ _ _1



Problem (0.47,48) has a unique solution up to an additive real

constant

1-14 1.4tvi (0.51)

1 Y4~ (4,9n Zj(W )Ci"(ihrl4JJ]IJ (052

where

IdoL -dMv. dA, (0.53)

Promula (0.51) is an integral equation of the first kind which

can be iterated to convergence. The first order correction to

with some modifications is

7 (((1~(4IcS(a~~t/A#A$ ,~4V-~h)I~'wj(0.54)

where we have and will abbreviate

U. V , V)v WT. (0.55)

Recall (0.11)

18



- -A2V (0.56)

so

+ V, W K , i (0.57)

2..

z*;. eelw*i)i(v-w1 V)~Y~W (0.58)

and

J *6(401,U IV a (~~) i~m f6j)1  (0.59)

so

19



( ,,Mks1L&'/,v,wv),,Ti'WLu,v, wrj-flld-,wi (0.60)

(0.60)

L(V, v, w) KW, V. W+ x(V,W ¢tfV,w _

_rv(% -_w) + z(0.61)

If we assume that iA(W) is not only of order E but is

also slowly varying, for instance -(A) /A) W Af" ) ',)Jf .1C

then the integration in (0.57,60) can be done explicitly. Of

course that results is much easier to derive directly and is

of no interest to us. What we have wanted and obtained is the

relative dependence of 'a, (M'Q) on the boundary part

Q wo(tA-44, .jA4 centered at *VWo(S) of length 4,(

When

O'€ 44 ,(I)~ 14-AJI, J--,sI (0.62)

the contriling factor of 6's influence is

(0.63)

2n



The asymptotically correct term is the same with replaced

by . A graphic interpretation of (0.63) follows. In order

to affect 'D,, ) the data about & 's shpae must travel

from a to UP. It is provided a free ride in 's portion

between ( and CA (in general on the geodesic P(G,%I between

and U7) but it must pay -F7per distance for travel

around any point not betweer. u and V. The data is

thrifty so it will move along a geodesic (a cost minimizing

curve which turns out to agree with 0.42) to some point C.

between o and tA and will then enjoy a free ride to OL. The

optimal choice of & is the middle point among &,(, . Let

us call the total minimal cost ,(.,4,4,1 . Then when

the data reaches 0- its intensity is deminished by a factor

of e . A similar situation holds for other function of

the conformal map besides , rtetQ) , except that the ride

on the geodesic between 4A and V is not free but on a reduced

fare. For instance (0.57,58) shows that the controlling

factor of G's influence on A J(fV) is

which means that the travel on PC7,Ji is done on a half fare.

Notice that this does not change 3-, the point of transfer to

Now that we know what (0.63) means let us understand

21



where it comes from. The term is simply the decay of a

Dirichlet or Neumann data from Q to (A,J) and is already

present in '.54). However, in the computation of (0.58) a

cancellation has occurred and another has appeared.

Lest it look like a freak accident let us derive it from

another point of view, close in spirit if not in technical

complexity to section 10's. Suppose that A is not only

slender but is E close to At. If 47 is between cA and <.

than /0)( 0 so let us consider Q between and W (the

remaining case is similar). Define

(J~~) uv 3 Ao) (0.65)

The domain P12) is close to the unit disk. The image of

has length of order 641J. A major change in 0 modifies

e(121 by a region away from (oI , whose area is of

order - The details will be presented in Section

10 but it takes no great leap of imagination to conclude that

's effect is at most proportional to that area, and that is

where the extra e comes from. What about 940 ? It is

normaiized so that 7(1-=i and I Pov- I  or fthpi * I

is of order A so & 's influences on ;(,) is of order

The interpretation of (0.63,64) was chosen so that it is

generalizable to arbitrary domains, with some modifications.
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The asymptotic theory has to be replaced by estimation up to a

constant factor. The measure/s of -a 's deviation from A's

shape is special and anyway there is no ideal general domain.

Instead we will pick a wide challange and consider a

perturbation of a general domain A to a specified general

domain .Q We will divide the perturbation into parts and

prove in Theorem 10.5' that each such part 0 of diameter 4C

centered at 4 affects A 1(t,01 by J#b4(,,,) which

is a generalization of (0.63) with ..ft4 1,RIfs4)I replaced by

The term j(W,4,t,4 will be first encountered in

Theorem 8.6 and

£.S',4A4.s4,, 0qK9 iA, 4,Q (,%O.66)

The general interaction between t,f,*j and a is described

by Theorem 4.6, which should be combined with Theorem 9.2.

The local length scale AC-r j will be generalized into

w{,1j,) of (9.2). Its dependence on 4A,Q is unfortunatly

unavoidable: consider a half plane _2- 0(*). The lack of a

local length scale, except of A4IW-3!C1 which vanishes on

the boundary is the most important general indegredient

missing in slender domains. It is not fortuitous that the

conformal metric /0(4,t) blows up at the boundary.

Our examples were mostly of smooth domains but notice

that domain (0.18) has a very sharp bend at --47, which

23



coerresponds to Ae,'s corner, and it did not distrub us from

completing a uniform asymptotic approximation. Theorem (10.7)

proves an interesting property of a fractal, which is the

applied mathematician's ultimate in roughness. However,

throghout this thesis we insist on obtaining specific

estimates at specific points, in contrast to the 'average'

type approach of P.D.E. Theory. That is an advantage when it

works but it fails near a rough boundary. In Section 5 it is

shown how to patch our results with P.D.E. Theory. Some

synthesis is clearly required.

Let us now consider the numerical computation of

conformal mappings. As remarked earlier, any Laplace solver

will do. Suppose that the domain -a is covered by 6(I
± )

points,A/ of which are on the boundary ')2. Then a Laplace

solver requires storing 0 V/t numbers and performing from

&(AAA1N) to O(M 3) operations, where the last estimate is

more realistic for complicated domains. The grid set up is

troublesome, especialy for multiscaled and time dependent

(free boundary) domains.

One way to avoide an internal grid is by using a vortex

represontation. That results in an integral equation of the

first kind which is numerically formulated as a set of Ax/gt

linear equations. It can be solved by by Gaussian elimination

which requires Y(A/) memory locations and C PA operatios.

Alternativly one may iterate the system using OC(l) memory and

24



I --I

"('IV) operations per iteration. This is the numeric1

approximation to Neumann's series, and the later is gaurenteed

to converge for any single sheeted domain satisfying some mild

conditions. The best existing Rayleigh-taylor instability

simulation has been done in that way by Baker, Meiron and

Orszag 1121. It is relatively easy to program and generelizes

to 3 dimensions. Moreover it can handle two incompressible

fluids problems which conformal mapping alone can not solve

unless the fluids density ratio is 0 or I. However

Neumann's series's convergence is precarious. The rate of

convergence for the domain 12 equals that for its exterior

domain t\\2and in particular convergence fails for

multisheeted domains and is very slow when two separate parts

of '.ZJ approach each other. The domain (0.18) requires ()

iterations per order reduction in the error. Moreover the

Neumann series seems hard to modify in a way which will

extract a singularity such as a corner and still preserve

convergence for general domains.

The most natural numerical conformal mapping computation

is done by taylor expanding the conformal function from the

unit disk onto 12. Several such methods are listed in (9 ].

The best of them takes only O(A) memory locations and O(eAfN)

operations but we have seen that the series will not converge

to domain (0.18) before A-efl terms are taken.

The first dirct computation of the conformal map onto a



cigar shaped domain has been done by Manikoff and Zemack 1 ].

Their method is to set up a system of A/IYI nonlinear equatins

and solve them by Newton iteration. Each iteration takes Oe)

memory and G(A") operations and only few iterations are

required.

Any partial differential equation on a time dependent

domain can be solved by a Green's function method which

utilizes only boundary data. This is not usually done because

it takes memory locations and CrAt"(Nz) operations

in d dimensions which is unresonable for . For the V2

operator in 2 dimensions better can be done because then the

Green's function G(t(,,) is consructable from G , (o,-a

and its harmonic conjugate where 00 is constant. That is the

basis of our method, though it will be presented in a

different way. It takes 0YA) memory locations and cI(Al)

operations. Its other virtues will be described in section

11.
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1. The Conformal Metric.

Throughout this thesis I is assumed to be a simply

connected open subset of the compact (with o) complex plane

such that \. contains more than one point, unless stated

otherwise. The Riemann mapping theorem states that-O can be

conformally mapped onto any other domain satisfying the above

mentioned requirements. For each Yd2 let P . ,.a)

conformally map 12 onto the unit disc and send 0Y to the

center:

, -afl) o, )4 t31L 11

a(C,0,Q O (1.2)

The mapping function 6 is unique up to rotation. The

necessity of specifying L4 is a nuisance but is also a very

useful theoreticl tool because it allows us to focus on any

part of A at will.

The following theorem is the cornerstone of our approach.

It is original in spirit though the results are classical

except for (1.3).
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Theorem 1.1: For any (A ( c

F ,-42)(1.3)

I = s - 4'0(J,-2.)(1.4)

where

P(,,,P A, h±6 (&W,,.12)I (1.5)

p g(,tQ fl. ) p1

C( 4  A) r,! .w: vf cf P , , (1.7)

The function (m, ) is a conformally invariant metric. In

particular, it is symmetric and satisfies the triangle

inequality. The functions L- F(A) and F(M) are

subharmonic and satisfy

The open geodesic l(l.4,A) exists, is unique, analytic and is
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characterized by

,,-P (1.9)

where It is the normal and ) is its curvature off'. The

global geometry under distance/ is Lobachevski's hyperbolic

geometry. Thus, for any (f..(FQj is a circular

arc orthogonal to the unit circle.

Proof: Clearly

A-r, I ' I/ Pip kA -a (4 -ti

Differentiation with respect to 1 gives

Obviously
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.1 (1.14)

with equality iff

Thus

d'.L /(3261,-J FOPC) (1.16)

d ifF~ 3  (1.17)

Integrating on any s' ('sN ) provides

Equality holds iff (1.15) is satisfied on all P , which

happens iff P[) is the straight line between 0 and PA)

We have just proven (1.4) and characterized the geodesics

which pass through (. The generl geodesics are obtained by

(1.10,11). Inserting (1.4) in (1.13) gives (1.3).

Formula (1.9) is the two dimensional case of Euler's

equation of geometrical optics. In order to obtain (1.8) take

,in~



the logarithm of (1.13).

AFA ±- (1-e z) (1.19)

where

P4 (1.20)

Hence

VI~(e A -6~ ~i6 (1.22)

and

4 (1.23)

(1.24)

While proving (1.18) we haven't actually relied on the

univalence of f or on its being onto 0,11j. Thus we have
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proven Schwarz's lemma which is formula (1.28) of the

following amalgamation of monotonicity results about F0and

the harmonic measure

&j(,(,W y WcM~l (1.25)

Theorem 1.2: Suppose that 7is a nonconstant analytic
function from 1lj into C2

(1.26)

and £9r.fj. Then

Vo (f.0 11(9 PL[YtI21j (1.*27)

and equivalently for any 4A~tfY41i

For any IO O*1.

j.~LA~tf ~ '4:" ~t(~)fkj(1.29)

and equivalently for any cf D AR2



ciVt4W( .(,, - ~al,~(~~t (1.*30)

Proof: Formula (1.27) is well known and trivial. It

combines with

YTuPA)IC TL (1.31))

to reprove (1.28). In turn (1.28) can be inserted in (1.3)

and gives (1.29) with the left hand sum restricted to a single

which is satisfactory when 1 is univalent. Formula (1.30)

is the integral of (1.29).

Here follows the general proof of (1.29). Normalize

.. :a.o.@ :{J, r )0, } (1.32)

(" (( J-I ,(1.33)

Because it follows that for any 340(ak) such

that j0()

(1.34)
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'-0 (1.35)

Moreover for any

(1.36)

Thus (1.29) is rewritten as

z1 (1.37)

C- *"U Y(.JVl

Clearly

(1.38)

and for ~~~

-'J->0 (1.39)

so

P~f~~7Iu ~O(1.40)

which proves (1.37).

--------------------------



In most applications of theorem 1.2 is the identity

map or the cover map of a multisheeted domain, which will be

defined in section 3.
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S2. Conformal Mapping onto a Half Plane.

We want to extend to {9"'s in the boundary.

But '..Q is not always the right set to study. For example the

point Lam:1 on the boundary of CVColpIOlis really two

points: 0-o" and 0-04( • The simplest solution to our

problem is to let some distinguish between the

points. The set Li_ 2vZA2 is the smallest fL completion

which has a continuous extension of the identity map

Similarly let L u be the smallest -a completion with

continuous extensions of both 4:0 and 6(-0 ,.2. for some, and

hence all , 4JFA.Q . The set l can be represented as

For each vcja, let be the conformal map offL

onto a half plane whose continuous extension to _Q sends Q

too0:

( , -(2.3)

(V A (



This determines 6 up to scaling and translation. The maps

6('0,I ) where &A match those where OtIa:

Theorem 2.1: For any a , there exist two real

functions A and r such that for each ueQ 0".-

4A, I )zer &VJOI(2.14)

-0 (2.5)

Proof: Take some i rg.. Rearranging (1.10.11) results in

f~i 1)(2.6)

where

A( =  ) -, 0 (2.7)

Let u-P. Then di(,Ai44,- (H 1J) so A-f ,o-to so

The function K conformaly maps D(o, ) onto 4,) and
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S6,Wle '* to C- 30

where 6 is a scaling constant and 6 is a translation

constant. Combining (2.8.9) with (2.6) proves (2.4) with

4 (1-A) (2.10)

The rotation factor in (2.11) is associated with f because6

.is not unique.

Theorem 1.1 is easily extended to the boundary.

Theorem 2.2: For any 4,Wg-. 41

F Litwo) e~io~w, (2.12)

#(V(.,4(4,' j I (V, 4j (2.13)
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(2.14)

and the limit exists alttough O(f4a):oc For any 0 Pt,)

in particular

j6Ati,W~ NA W/(.,1) (2.16)

Suppose &4.a. Then

(2.17)

Proof: When {J'.aO formula (2.12) is an immediate consequence

of Theorem 1. Suppos3e f nd l et 0 Formula 1.4I

implies that

(2.18)

according to Theorem 2



I ",'1; R"f.9P w,"+ / ) (2.19)

so

fcip (, -"t (2.20)

Thus

which proves the existence of and formula (2.17).

Formulas (2.12,14) for (c.- imply (2.12) for fl . Formula

(2.15) follows from the triangle inequality for the metric /0

We had to consider ratios of 6 at different points
beause in general there is no natural normalization of

6( ,a) . When ocla and the boundary is smooth nearop so

that the following derivative exists, one normalizes by

j ~ (2.22)

40
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3. Estimates of ..

In order to apply theorem 1 we need to estimate F as in

i Pj) AT 4) r:,() (3.1)

Once suitable estimates (3.1) are obtained, we get

\$ VP~4 5  (3.2)

When f is symmetric with respect to reflection in the

straight line betweenn 4 and 0- the minimization over curves

is unnecessary because then (UM) is that line and it does

not matter whether it minimizes F or not. For slender

domains one can construct a F<'I eccentric quasi conformal

0, onto 144m ), 7r Then the minimization

can be avoided:

< p' , 9i .. ) -(3.3)

and a similar upper bound holds.
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There exist several classical results concerning F(s)

Some of these results will be stated as theorems 3.1,4. The

connection to the general problem has not been used previously

to the best of my knowledge.

Theorem 3.1: For any (ycfl where A is allowed to be

multisheeted with at most rl sheets

I

A 1fA- (3.5)

Conjecture:

'LI6 T-(3.6)

Equality holds iff it is the regular circular 3-gon of angle
'Lr

323
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Corollary 3.2: Suppose that q'.1joo. Then

4A(Pays 11 (3.8)

Svq, -a I (3.9)

The left side inequality of (3.8) is known as the 1/4

circle theorem. Thus even such a crude geometrical

consideration provides F up to a factor of 2. The advantage

of /.o%.,2) over the pair (0,.n' for the purpose of

estimating F((Y,XL) is apparent.

A slight sharpening of corrolary 3.2 will be useful

latar.

Theorem 3.3: For any

Proof: Normalize (0J: and

L(0,C1 >" 0 W (3.11)

43
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Denote

4244Lr17JQ (3.12)

The function Z is univalent from 3(o,a) thus 7 is univalent

from D(O,iV onto (.Q). By Corollary 3.2

F-'[0, 7(Thj A oIwb (3.15)

~(3.16)

Accurate F bounds are obtainable by applying theorem

1.2 to cfic.O! where a11,ill are known. Requiring .IZ to

be simply connected may be very inconvenient because it must

depend on R 's global structure. Instead we can take a

multiconnected I2. and define
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a) i4 1ei!j~a(.7

Corollary 3.2 is of that type with

-PO, at "A A1 11-)] (3.18)

The general stationary condition on a is that it equals -ax

minus some curves connecting C\12L's components and

zie- -,oR) is continuous across these curves. It is a

hard problem even for simple domains.

An easier approach is to cover &2 with a simply

connected multisheeted domain

Dz, - (0,. ',. , 1 0/k (3.19)

where OeA I is arbitrary and P- is the homotopy relation

between curves in Rz with fixed endpoints. The cover map

'Flow2 :- . ..~ (3.20)

simply sends each curve to its endpoint. For example an

annulus is covered by a helix and in accordance with Theorem
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1.2

> (3.21)

Lower bounds and a useful frame of reference are provided

by the capacity inequality.

Theorem 3.4: For any (9r.t

F(VO-a e (3.22)

When ZX1 is a Jordan curve a minimal P exists, is supported

on I and equals there

S(W)4 (3.25)



Formulas (3.22,23) have a physical interpretation. Charge

lines of total charge 1, perpendicular to the complex plane

are distributed in 21(I,.L according to . They arrange

themselves so as to minimize the total energy V . The

resulting potential at xC is

-) 0 u.A (3.26)

[G (1,c,, .,. cA (3.27)

where the Green's function is

(r,,,.)--IrJ-J +yJg, ,l (3.28)

G , 0 (3.29)

and 1(3,1,12) is harmonic in ), *, . Notice that

e~r , ~ e(3,' )  (3.30)

(3.31)

Theorem 3.1 follows easily and "naturally" from theorem 3.4.
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Let us prove a distortion Theorem:

Theorem 3.5: For any (r

1)t A) 9 ) o (3.32) t

a C.[ti- O±6'ku I

1<-41 (3.34)
7-1

where

61 -0( A(0)(3.35)

-I (3.36)

Proof: Normalize A ffjL()I. By definition D(0,I) c12

so for any Ur-7t(O, C



Q) (3.38)

which proves the right hand inequality of (3.32). The left

hand inequality is obtained as follows:

F- '((,.a) . 6A(,I 4z, ( .t,IM 1 (3.39)

> (3.40)

In order to prove (3.33,34) define the analytic function

MA, a SZ)(3.41)

For any 4A'DO(0i)

(3.42)
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F (0, -) A , 0, -a (, I1 (3.44)

R7(A4 4~ (3.45)

In conclusion

C(O1 - <I A, 4 (3.46)

Hence for any U .(O,0o)

,a0o, i LoL , (3.47)

-w~t 
4  7(3.48)

r(;21" C"4 T l O(o,-c) (3.49)

7r

which implies (3.33,34).



4. Miscellanous Results Regarding Geodesics.

In this section we will prove some properties of the

geodesics.

Lema 4.1: For any A, (,I

, (4.1)

Proof: Let >=V (,,) . Then

4- - 0- (4.2)

for all . The region of !s satisfying (4.2) is

connected and contains -_1,( but not 0 (unless c*-- ) so

(4.2) holds for all jrC\42 . Equation (3.23) can be

modified by distributing the lines of charge in

I- 1 .M instead of AL o(t4A,) :

Obviously

n (4.4)
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thus

which proves (4.1).

Theorem 4.2: Suppose that &LLCa1 and (hA5 , 12) can be

analytically continued to a univalent (one to one) function of

(Adel . Then -l1 is strongly convex in the hyperbolic geometry

of A:~ for any MO&46 ete

P(4Q I)C~l (4.6)

or

'D (4.7)

Proof: Clearly we can assume that

52



(4.9)

The extended c(?, -a L) conformally maps £2 onto some domain,

-a onto 0(oa, 4A to 0 and ( to oo . Thus we can assume

.2:0(g1 , C4:0 , Q "oo (4.10)

Define

if At 1, -{, PO-,1 (4.11)

Lemma 4.1 .mplies that

F( , ) r-.(P,."L!(4.12)

Clearly

d~r- =  l(4.13)

so

P (,I1dI e (j~112ud 164O 1t2 (4.14)
F r

but 11 (0,., Li) uniquely minimizes the integral among all
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curves in 9(0,of, a) so P

RIP >,O (4.15)

The integral will diverge iff 0 or ov are in D12 but then we

take neighbors.

For any we sp(Ooo, l) I Ae 9 ,O so

0 l 1 -O (4.16)

so

RECLP Apto,.fl -' v o (4.17)

thus ( D(,o,l) is monotonically nondecreasing. If (4.6)

is violated a part of P(0,1-4 is a straight line in DO(-a$'

It is always true that (fP(Oo)1o0 is a straight line-so

the Schwarz reflection principle implies that all

O*I C 0 (at) and - 044)c12 which proves (4.7,8).

The univalence reqiment cannot be weakened even to

'a"P4,M,20for all 4A(-_1l For example take

4(4.18)
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Theorem 4.2 is intended to confine geodesics but it has some

spinoffs about univalent continuability. For example:

Corollary 4.3: Suppose that Ltc V(ad) and

can be analytically continued to a univalent function of all

Usi)(0, 3*) . Then £ is convex.

Proof: For any u,7fL apply Theorem 4.2 to 42c.01 where

is the disc whose center is on the straight line between 4

and 0 which contains and is tangent to 0( ,a)•

The following result shows how a geodesic between

boundary points is perturbed when the domain is perturbed.

Theorem 4.4: Suppose that -Ot t12

a3, aA'1a (4.19)

and ali are in the same connected component of 12 \tIt as

well as

(, W At W1 (4.20)
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VV= I 2M(4.21)

\.n (4.22)

where 4 m (Ai,& denotes the connected componet of 6Z which

contains (A. Then

Consult Fig 4.1

Proof: When 12 and RIj are disjoint the theorem is trivial.

Oterwise define

&i~oiI,~ W C\f (4.24)

Clearly Dfu,rl-c2G Let us change QL(O/z-a. to Va0

continuously and monotonically. A particular scheme will be

given in Section 10. Take IOCZ(;,)W 94jnD( )W

where iE LO .For any 0O5c, el there exists a AY>Q such that

r~ctJ, fl~4~'hc12'f)(4.25)
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Then Theorem 4.2 is applicable to

QtS1CD, .,2Lf1 i(4.26)

aP(J M W, n, ,(4.27)

Thus

P 4t1 , Z,,iu i € (4.28)

or equivalently

We have just proven that 6(0 c (i1 which can be written as

e~, wa2.rNI1/ ) (v W (4.30)

Similarly

Formulas (4.30,31) combine into
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(4.32)

which implies (4.23).

Formula (4.28) follows directly from (4.26) by a messy

computation or a consideration of the second variation of

Now let us examine internal endpoints.

Theorem 4.5: Suppose that VII4

(7 In(4.33)

.4,?,aj. satisfy all the conditions of Theorem 4.4 plus

i ('a, ) .2. (4.34)

Then

P (,,. eA c w, \P(,-,-2 (4.35)

C/,7,q(fl4 ..Cl.\ S.)f, ] (4.36)
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where (P' is the continuation of/"' beyond its endpoints. See

Fig 4.2

Proof: Theorem 4.2 is applicable to

CIC A 11-L(4.37)

Q tC'12 \W, fl'\ rC~ 1 , (4.38)

c P f, t,all.) c (.anQ/12 Q 4.40)

Let us monotonically transform .a1TifnflII to fL(i):f:j.

Define
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as in Fig 4.3 . The perturbation argument which we have used

to prove Theorem 4.4 shows that

Ra(rA#) zR(1) (4.43)

, ( ,,A ) ," ( 1(4.44)

We had to use the fact that the boundary endpoints of

aMt j, 0'fi are in aA170 . This

:7approach cannot obtain (4.39,40) because when fI(kI is

shrinking a(,,4)Y may get in the way.

Suppose that (4.35) or (4.36) is violated at *time*

but not before. Then in light of (4.39,40,43,44) the total

geodesics 7"/I'(,,(/ 41(JI7 and ,

intezsect at a point different from 4A,o

Cf9 [TP" (f,,I i A 7r(m,v, I.di \f4A, Q (4.45)

Suppose that (4.36) is violated and o-LC, *, iA,

(otherwise exchange 4A,( ). Then

COI I (2C. MIXAa) \Q (4.46)

So
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PNOV, As) c (S.4 t )\t (4.47)

where R,(f,4y,v) denotes the R of formula (4.41) with t,4j

replaced by 4j,4 . Formulas (4.39,43) imply that when Xl-kj

R (f, (0) -) A(0 1 01aiv14 a~ (4.48)

which contradicts (4.47). Thus (4.36) holds for all 0.

If (4.35) is violated and 45 j, 17tV ) then

CP(-,w, fdlM ,& 6 %(4.49)

which violates (4.36) for V, .

The next result helps estimating 4 a

quantity whose importance will be seen later.

Theorem 4.6: For any v 4, i j~ e.3 j. there exists a fy;.Q

such that

qla 01 r Nj910 4 f r?(4.50)

Moreover for any Le~l
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(mj COL (4.51)I~
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5. Derivatives of Conformal Mappings.

We have already seen that the dependence of the

transformation / on the domain Qa is pathological. The

correct function to consider is .(tf,-a Formula

(1.3) gives its real part and implies

We know how to estimate P and will learn how to estimate

but the two terms may cancel each other. When &c"' n they are

bothoo * In order to get a useful formula we apply (5.1) at a

now center-point Vr}, subtract it from (5.1) and obtain

I% t .f(. M .. 9 I i~ 6

the point k9. is intended to be near the geodesic connecting 4

and a . Clearly

NA WA(04/4 r7N,fI (5.3)

The distances I0-f4I I 4qIji-)JLI should be of the same

order as the local length scale of -t2. The term -2/(Gtk) is
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interpreted as the "global shape" contribution to

Z4A6(u4., and I'DI(N, il1 as the -local boundary"

contribution. That division is fuzzy at best. When al is

concave near A a cancellation is unavoidable. For example

consider a half tube ending in a cone of angle a<

and let MA-D-a be near the central corner and 4 well inside

If 4% is chosen asccording to the smallest length scale

1 '- f(5.6)

I Iv + 6,L) (5.8)

It seems we have gone too close. The 'correct" 4%, is

64
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to.-I (5.9)

-0 *V : (5.10)

Notice that when the corner is concave .-',T the local

contribution is positive and cancels some of the global

contribution. But the local term is only logarithmic in

Theorem 3.4 can be used to estimate

The simplest comparison domain is the inside or outside of a

,disk:

Ia) ~ 27O(5.12)

~cO (5.13)

If 44 is on the boundary and v on the internal normal at -11

A M 4 >0(5.14)



then

IC&-k~ O

Let us consider higher derivatives.

Theorem 5.1: For any (A,C1,40fE-C A >r~,

4.4, w)(5.16)

Proof: Formula (5.16) is obtained by taking the logarithm of

(1.12) and inserting (1.4). Formula (5.17) is (5.10)'s n'th

derivative.
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If we set t zA in (5.17) we obtain the Pt',t analogue of

(1.3). It suffers from the same cancellation problem. Notice
that the only a dependence of lav A ,1 as expressed

by (5.20) comes through (rT) . The term in the square

brackets is bounded as follows:

Theorem 5.2: For any 4A, fo f

where

i? , 4V1 V,fa) p ja(Q, V) (5.20)

The proof is an elementary exercis involving

Lobachevski' s geometry.

What have we gained by replacing V with k ? The point

4) is *near 4t4 so the localization theory of section 10

allows us to approximate 4 , i j( 1, ,-L) by

a4AJ" J44dr(g VA where ft equalsfa "near" (4, v- and

omits the rest of the domain. Thusft is relatively simple.

Nov to estimateI
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Theorem 5.3: For any kpe'.a the following functions are

analytic in WL.

~jcA~uILJ -(5.22)

and satisfy the boundary conditions

-A / JA(5.23)

0h,s,.11)Vt (5.24)

where @( ,',I) is the angle of the outside normal to

at 44 relative to the straight line between V and 4A .

See Fig. 5.1

Thus we have two basic Dirichlet problems whose

solutions and their derivatives provide all the functions we

want. In particular notice that for (4A
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- I(hf (5.25)

Problems (5.23,24) are the first two in an infinite series

whose third involves Mi's curvature and so on so that the

vt'th problem involves the first #1-1 deritatives of 6 and

l. The fourth problem onwards can be chosen to be

independent of wt

The theory of elliptic boundary value problems is

applicable to problems (5.23) and (5.24). It is covered in

overwhelming detail in [ 1. Those details shouldn't obscure

the fact that the bounds obtained are quite bad. For instance

consider the conformal distance ?O ,&, &) . The weakest

P.D.E. Theory's restriction on £1 is the cone condition: for

any O'c- there exists inside -2 a truncated cone &) starting

at & of angle c< and length / cp Z -V2- -ZL

Ve2 ~~C. (5.26)

This is not enough to bound 0 (since bottlenecks are

possible) so we must add a mild smoothness condition such as
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where X[3,3 a) is the curvature of '.f1 at . The best/

bound we can expect is

(5.28)

This bound is far from trivial. Notice the subtle way

condition (5.27) combines with the cone condition to prevent

bottlenecks. However it all seems quite irrelevnat and there

is no lower bound. Compare with section 9. A possible basic

deficiency of the P.D.E. approach is that (5.23) and (5.24)

are very special Dirichlet problems: their domain and boundary

conditions are strongly linked.

Here follows a result which seems well beyond the power

of P.D.E. Theory. For any two points WL,&j on an open curve

P define - (VL, to be the change in P 's angle between

*J, and 44.:

""7/ (5.29)

Theorem 5.4: For any ,

1 ~ ~4(4t,12 +~t4t -e\~l . 7 (5.30)

where minimize I -4YI ,-(.I6 respectively and /
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qI

is normalized so that >0

Proof:

For any h, CLc

AA., 7L(,j~ OZ A~V T~q(L(5.h (opo] (5. 32)

vhere

For any , 0 1.}

~ I ~(5.34)

fo, '-, Dro,1 0.] o(S.35)

Theorem 4.2 implies that

W,±= i ,I 1) (5.36)
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and of course

p(~A-IA~aJ. 'z~(..)(5.*37)

so

I.&44/~l) (5.38)

and a similar result holds for V,Q .Moreover (5.37) implies

that

where the sign depends on 4's location. Combining it all

together gives (5.30).



6. Extremal Length.

This section presents an alternative to the approach of

theorem 1.1 towards the estimation of conformal invariants

such as 0(4,0) and the modified harmonic measure

Icw14.A~f ,: i(/( , 42 (6.1)

For any set of piecewise continuous curves cC its

extremal length VS) is defined to be

(6.2)

where the metric scalar functions I are smooth and not

identically 0 . Clearly VS') is conformally invariant. It

is easy to show that:

Theorem 6.1: If j'jc Z then:

For any

( >(1 L, )(') (6.4)
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> (6.5)

Each ' defines its conjugate

-C?=-C.. , ei4 Y vr C-' /ZP (6.6)

All the 's which we are going to discuss satisfy

(6.7)

(6.8)

The latter property is of considerable importance because it

enables us to bound X(T) from above as well as below by

using a single

f pril) 163 lJN 4__ __ _ _

Let Vgc2 be two closed sets. Define §(Vfl) to

be the set of all the piecewise connected curves connecting U

and / in
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(~v ,.iI{~~z.s n) r I tvn i . n r~lN (6.10)

The conjugate S4(/V,f) is the set of all the piecewise

connected curve separating V from V in £2

(ti V, ,-a) . 44 /It (I Act" , V,(6.1

We will abbreviate

>( ,, V, >R) (u, Vn12 (6.12)

The standard examples are

>,t'rO,, ,, ) (O,1)( ro6,..,?o,0,1 7z 4 6.13)
' C'

>,Lo, C-a 0 (01,, A) 13, \a(o,]: 4 -. (6.14)

The rectangle (6.13) is the canonical domain for VV V:c-'

connected curves. The annulus (6.14) is the canonical domain

for fl doubly connected and VS2 (4V where L/, V are

connected. These two cases are related because an annulus

minus a radius equals the exponential of a rectangle and the

missing radius is in 9((/,V) and minimizes Cc(3)Io~, for
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the critical metric function so its absence doesn't change

X((/V) • More generally

: v. e 'oi 1 o5".: " 4 n .j'. (6.15)

4(I V (j ,1 . v e , (6.16) a

is the general domain for I doubly connected, f--VvW , V, W

connected and /cV. Situations (6.13), (6.14) and (6.15,16)

are illustrated in Fig 6.1 . For more details see (6 1.

Theorem 6.2: Suppose that R I. Then for any mw

Well2 connected and 0<-+,14 < "L

lTr

-1 a .L,, [ .,7 2COo 4,,,,,->, 4. h r.+ ,/( < (6.18)

AN1 2.10(v, )j C -el (6.19)
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Moreover for general Wc/z,

The limit -ei 4 0 formulas hold also for 1 .

Proof: Let us start with the Y40 case. Then formulas

(6.17,18,19,21) are obviously conformally invariant so we can

choose a convenient geometry. For (6.17) we choose of course

2ro,) , -0 (6.22)

for (6.18)

W2u0(OI1 / '' (6.23)

and for (6.19)

2,C\C-0,O , Q >, t (6.24)

the computations are trivial. Formula (6.21) is harder.

There we choose situation (6.15,16) with Rai ,A'i0.O



Because of (6.15) and (6.18).

- X((14rJ ~-~ - ~(6.25)O r

so we need only show that

L 1(W, s (6.26)

which follows from Theorem 10.2.

The finite .,f case is proven in the same way except
that when transforming 11 to a canonical region Q one must be

able to bound the image of OC4A-Ontw] from above and below

and the bounds must agree asymptotically. Those bounds are

provided by Theorem 3.6. They immediately translate into

bounds because
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7. Internal Metrices.

It is time to define a geometric distance between any

44, .The Euclidian J#-01 is not satisfactory because it

can identify two different 1 points, or even £2 points for

multisheeted domains. The natural candidate is

Jftlv1, (j 1 (7.1)

A minimal curve will be denoted by 2(ooaI)

Theorem 7.1: For any p, 2O' N(f,0,1) exists and is

unique.

Proof: Existence is well known. Let 3!(4AVPl) be a minimal

curve. For any F there exists an F>O such that either
jI and -?A 0(3,E) is a straight line or 3 and ? ,F)

is concave relative to . For almost all y a tangent

exists. Define MOO)) to be the largest interval of the normal

line at which is connected to U in a:

w.3 r 2  a,,~ ~.,.) (7.2)*

Define

I
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The local concavity of ? implies that as tends from tA to

U U(j) increases:

It is easy to show that - 12 implies 0# V( so

W~t C"(0 , t,. (7 C.5)

Suppose that , . Because of (7.5), for any

g(t,vTwe can define P( ) as a point in

~YJ)~ PA?(J?(7.6)

so that P is a piecewise continuous. Formula (7.4) implies

~ (7.7)

and because of the local concavity

X P31(7.8)
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thus

p ( (7.9)

Moreover for equality to hold P must be parallel to 2 at

Z 's straight parts and identical to . at the strongly

concave parts., That implies that P is identical to Z.

The 0( disks are

( , -,2,,n)-Y, d (M,,' n, (7.10)

They are strongly convex relative to R2.

Theorem 7.2: For any .&,ur-)c(V,,1)

~(~,t,2.CD(A,6 Ul Ut~ "N 27 (7.*11)

Proof: Suppose that .(m, • Parametrize 4A) ,'L> ,,

E- ,40) by 0 . For each 0. i define P(d) by

__41_ (7.13)



It is easy to show by a polygonal approximation that

h'P~i (4 IJ -241(46 *f2a (7.14)

and formula (7.14) integrates to

dr' dwm. . (7.15)

Equality can hold only when v- 10t or fre jc(ApiA,) because

otherwise (7.14) is a strict inequality near /z

Inside tl, '/)j's curvature is limited. In particular

Lemma 7.3: For any OVIR ,O V 0.D (toa,S2) there

exists a #~~,) such that

where

Proof: Define
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.(i4D ;(,3.2n ((4A (7.18)

then for any jD(m4,A-) O.

Theorem 7.4: For any c I2> 1M(Q,!2 ,0d-/'2 ,O l

there exists a curve W such that

17 (7.20)

Proof: We will assume 2 to be smooth. For any

&,o rD,a, a)lia define ;(T to be the first ;e

point in if any, or (P if none
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ca (7.23)

Define

Theorem 7.2 implies that

131 IT. 004a f /) 1 (7.26)

if ~r otthen

~ (7.27)

Otherwise (%l: a( J so (3 is tangent to JR2 at

p~).Then either o~t,~3~ 2~ so (3 7(p) is

perpendicular to .Q. at fl) which contradicts the tangency

or df(q,,7 ,,t = A so ot 0((JtfP): Q~ mr~p
Suppose that
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/4((aJ~a(7.28)

Define W to be the curve which connects 44 to zL2 inlo N5.~ a2
and starts in the general direction of 7NhI-14

d14> 0 (7.29)

The curve : Ofal is perpendicular to( 7'(41) f at 44) so

(7.27) for 3=4 implies that (7.29) uniquely determines W's

direction. For any ';W define

De note d(V/1,~ Clearly

at T 7.31

/A (385



- (7.33)

~~CJ$4sie~y)(7.35)

We claim that for all

(7.37)

Formulas (7.36,37) hold initially at * . Let fW be the

first violator. It can not violate (7.36) because (7.33)

implies that /')' is monotonically decreasing up to . The

function 7(s) is not uniquely defined and -<(3) may be

discontinuous but (7.35) implies that any Jump up to and at;

decreases a( so ,-- which contradicts (7.27).

For any J ,FW
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=)(i7(j)? A (9,() . }(7.38)

Suppose that j~ i.e. separates c4 from sin W. Then

the line separates c4 from W in so it separates

~(U, 4A.a I f rom (fij, ctqqfl) in a7

Q Wt?(w)(7.39)

Thus for any k 4) , ((,-k '. -) intersects 17(711

at some point 4 so

d~,Q1  ifw, 1-0 ~ - d-~(j, 3)] (7.40)

dcq~~'z tdJ~~~t~d~(~i3 ~/f~)(7.41)

( 7 (w)u) C OCq) I (7.42)

Thus

7A v ((an) ' (7.43)
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Clearly

j ~A~s~ if, 4 =0 JIo/47I7I) (7.45)

Formula (7.33) implies

and 4ti. toor, so

W & (4 r, 1)/' 4q (7.47)

We are still left with the case

1A ( 4A) >,A (7.48)

Define 44t to be the endpoint of

P--' C i, -4 R, a (V O ,a (7.49)

which is closest to M . Clearly /.I(L)zA so we can start WL

from 441 as before. Define
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WC41,tCt, P ~C ( 1 $Wj (7.50)

Then

aW% 7rM s A .4, L) c4 c(T T),4( (7.51)

suppose that fV 54,Icf . The I,Q bottleneckA width at

is defined to be

- ,p, oI , , ,(7.52)

Theorem 7.5: For any vfO a

where
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and V.,(742 minimize IcI-{4I 14IONP respectively.

Proof: obviously

Thus all we have to prove is that when (7.56) holds

Assume that

Ot>8(1IO a (7.58)

Let 4qi;WjCAA;,W. minimize JhQ fW*hI) respectively.

Clearly

so it is enough-to prove that
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Q rs"((A. (1, ..)' ( 7.60)

Define

P; w -a) ,(7.61)

the line (fA,"' can not penetrate c(,i 4 ip,142 ) because they

both minimize the distance from a point (M and W

respectively) to Wj. Thus P penetrates Qc at exactly one

point:kP. Hence P's endpoints t4 and IV are separated by

6?.
Assume that

6 e (O, It",A) (7.62)

It implies

d< 44 dv, WL,.) (7.63)

where W,WL have been switched if necessary. Suppose we

could prove the existence of

Pi AC,,, X O (i,,,l (7.64)



Then there also exists P C[4),Q,,,7 so

Pi'sW, P-L St4,feC(&L,0) (7.65)

The continuation of 4,,- intersects OC, n ,2)7

at a point F

We claim that if 3/Z ,L(,4Th tends to ; so that

monotonically decreases then monotonically

increases. The reason is that a stationary point is

characterized by

in which case either

IA f (7.68)

or

Define
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Pj-(4 P)@c2 (7.70)

where is the shortest DC4, -,(vl)7 arc connecting P to

. Consult Fig. 7.2. Clearly

so

P1  [ M, (, 11(),IUT) \ (V,(4,,D)7 (7.72)

which implies (7.64).

In Section 9 we will need

Theorem 7.6: For any 4,(Ye ,, there exists

a unit normal n(Wtf, ,-L to 7(tMQ, i at¢v such that

D ,VD)A[V O, (4€,, L ) c(7..73)
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Proof: Let

Q C\ C C12(7.76)

Define A(w~) to be a normal to ?at 44J in the inside t

direction. It exists because is concave relative to '

Suppose that A lP(V) O~O) /A"I:I .= The line (V,~j~d is

initially inside Q . Define to be its last point in Q

V AA A '-,(7.77)

(W,7) C& (7.78)

Formula (7.78) implies that
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JQ cc P (7.79)

, T' ,4 (7.80)

NO ,, C (V 1 ) C C1 (7.81)

which proves (7.73,74).

Lemma 7.7: Suppose that ,fJv12, W fo,0,_ and

p ,=c-,,,, [ -* , L1,,,c,, (12, .4 (t, i U fv

,, ~W_ 4,1',, .qC,,r,, =,1 f VI< } (7.82)

Then

OL)Oi (04 , l,f . R, T (7.83)

Por some purposes the neighborhood 4n [01 (fl, ),,.a]
is preferable to Ow* A 1) it is approximately generated
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by the metric

ot , , / , ,4 ,~4,fr~l,,,l.. ?i (7.84)

Clearly

Ift4# 01 0 (t,, -a) ofdJ4.,t,,i2 (7.85)

The do disks

Oo(4D,4 ,C,)- "f',I d0(', ,-Q) o (7.86)

satisfy

Do(v, ,,al c 4n CO ,.2 Do V, 2 0, (7.87)

By now the reader should have no trouble proving

Theorem 7.7: For any MiffE&1 oQ

h 4l. ~o is defined analogousy to(7.88)

The do bottleneck width 46 Is defined analogously to6.



8. Harmonic Measure Bounds with Applications.

The harmonic measure CAj(W,Q,fl) of a curve We/€. is

defined to be the length of its image fw, 4jC) so it can be

useo to approximate the image size of some 12 subsets.

Theorem 8.1 is a localization theorem. It implies that

the harmonic measure is concentrated at distances of order

4(,.1) from the center.

Theorem 8.1: For any G , Wc-A2.

I(W,ej~ 1 8.1)

die - u(8.2)

the inequality is sharp.

Proof: Normalize

0-0 , .(o,L. (8.3)

In light ot Theorem 1.2 we can assume that
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414r0(ki, 0)(8.4)

Theorem 6.2 implies that for T

t\bOv W3 L EFVI )< (8.5)

We choose the metric scalar

(() ±VfI (8.6)

.4 OqJ (0~hDi~ 1() A (8.7)

Clearly

~ (8.8)

and for each 116 VCO0(,f),Wl

~ i~y ~dI ~(8.9)

Thus
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(8.20)

obviously

N) -z Trc (8 4 g1)

It is easy to show that (8.11,12) imply

211. L~ (8.13)

so

x4o(,C (8.14)

Because of (8.4) Theorem 3.3 implies

~' (8.15)

which combines with (8.5) and (8.14) to give (8.1).

With a little extra effort we will prove another result:
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Theorem 8.2: For any (9l , \Nc'S1

/(wIW, '4. (8.16)

(8.17)

Wca,Fai z A i (8.18)

Proof: Normalize as in (8.3). The case I-e follows from

Theorem 7.1 so we assume

I- de e,€ -(8.19)

Theorem 6.1 implies

gaD a Wb(or), 11 ,.A1 * (8.20)

AtL-a1 \O(OEr (8.21)
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U1~f'~~ -(4311 a I (8.22)

,,(, , ) 4 (8.23)

(1) -l +4 ,,j1 1 - (8.24)

As in the previous proof

)CofJ(/L, AtI a, -L4aA (8.25)

> V, ,- ]> (8.26)

.!('l.4,E~~,/i~ /!~cA4)(8.*27)

l -j - < Tr)Cz (8.28)

We have no anologue to (8.11) so we have to be content with

the fact that (8.28) implies
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t , -L V (8.29)

A4 I 1IT

The combination of (8.5), (3.7), (8.20,25,26,29) results in

(8.16).

The next result implies that a geodesic doesn't approach

or depart from a boundary point more than a constant times the

distance it has to as a curve connecting the geodesic's

endpoints in 12.

Theorem 8.3: Suppose that £,te . Then any 3/ (1,t,!i)

satisfies

and if oa.

Iq, mv d(t4, 1 ,1 (8.31)

Inequality (8.30) is sharp.

Corollary: Por any v, ke_/
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0.1-0- (,42 < ¢ ' f,'Ql 1 (8.32)

and if o .l

(8.33)

Moreover (8.32) and (8.33) hold with 0, 4 replaced by /J.

Proof: The goedesic /((4,L) extends to 7li(,(Y,12) whose

endpoints (-,I are on the boundary

• *(i, Orl f( - ( 4 ai (8.34)

For any F1>O ,1 and (f are connected in

A,. a o , ,a V,-F-, Q (8.35)

Define v, to be the first Pr(A, ia point in

r(z ,,,,.) ci \ t. tCit (8.36)

and similarly OL . Define
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,AC, ui, l I,(8.37)

Clearly

#A,,,(,, , r , (8.38)

v6(3 %A1 ,lt) ',-6f,(,QAj -V (8.39)

rtL3,-C , raLfl (8.40)

so it is sufficient to prove (8.30) for V l,- The

points A j, t split JG into two connected parts

g\ Ct4L,Qj &WUV,4-" V". " $ (8.41)

and one of which, say Wj. , is at a distance 4 away from I
d

Because of (8.38)
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(8.43)

Thus Theorem 8.1 implies that

-_ -- (8.44)

which proves (8.30).

Now to (8.31). Define IAL to be the first P((,AI!

point which intersects -(tA4,,L) , define 01. similarly,fL

by (8.37) and

S1- a -aci \ C(, q,- 1a (8.45)

Clearly

2(8.46)

and Theorem 7.8 implies that

0 ((V, v, 1 ) (8.47)

, d (8.48)
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Because of Theorem 1.2

J-L -L 1 (8.49)

and Theorem 8.2 proves

V+L at d P6 (8.50)

IF.L (8.51)

We have already seen that the conformal map onto

can be extremely contracting. However there exists a

reasonable bound on its expantion power:

Theorem 8.4: For any (,fVca --

z (8.52)

Sf A I -a)<yt(8 .53)
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Co,24 ,-) 1

obviously

(f -aj-. (8.55)

Proof: Clearly

0

which implies (8.52).

it is easy to show that

Z )4 (8.57)

where

(8.58)

Let Y minimize 44f/Djt -a),~ )/ Assume that
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.n(, oW. -ao(t,4,f2.7 (8.60)

Theorem 8.3 implies

4 ~*L(~ 4(8.61)

so

4 4 T 0.2 (8.62)

Now assume that

4. o(UJ,.QI (8. 63)

Theorem 4.2 impies

and obviously

Thus
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-- ,,, . --,, nw," , t ,. , , -

tO W)~i (8.66)

Theorems 6.l,2 are applicable only in special situations.

The Tunnel Lemma is much more versatile but it may give

ridiculous numbers.

Lemma 8.5: Suppose that 1'..I , i&a , i, a) and

et0> • Then

,Tr AAa J

where

Proof: Theorem 3.4 and simple inclusion arguments imply that

I( ,nt w 4y , a ) >. (, .a , , ) >/ e

where
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.AL%:4,1(o,AA 1  (8.70)

A, -m ,(,,, A ,\ w) (8.72)

W, [!WI2n ,dl , C-J 0 (0, a\.NA.] (8.73);

As- .A. z(vVA) (8.74)

Consult Fig. 8.1.

Define the metric scalar function

1~(3. ^4frwi lot (8.75)

Take 40. Clearly

(Ae A - -ali, Ot (8.76)
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let

6c VTWI 'a r 1 I, Jt3*\O( (8.77)

If Q is an open curve it has two endpoints

S\W (8.78)

Because of (8.77) intersects P at some point 0 so

' '9' d A V(, 9 ./) +,~ro p 9 ,A) ", 724 (8.79)

If S is closed and of length -<26 it is contained in D(U, 1

so

~ (yi > 4.. Vwl (s -,Qt z 6 (8.80)

Formula (6.9) implies

• , '7" -,TT (8.81)

The boundary curve W is connected so Theorem 6.2 applies and

proves that
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III
(- w,,zDto,A,\ ,wJ - j ,j r4t, (8.82_)

Obviously

1(8.83)

so

(,,,j.,4-e - (8.84)

We will use the tunnel Lemma to prove a relatively deep

extension of Theorem 3.6. For any ,a .I2 i >0 define

I(A diIIV 2

Theorem 8.6: For any ,,Q_2 -0 there exists a

complex . , such that
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c 4 ol ~a,c~ 0f0 4t4,I),4CVJ(t(, ,,J) (8.86)

and for any a < (f, A )there exists a real -I'j' such

that

I[ , 1, C- if,., S of.,
cJ /. i,-(8.87)

Proof: Let us prove the right side inclusion of (8.86).

Obviously

6 (0,)' Qo, I (""I4J\ (1 , i 'iu-J (8.88)

and we can assume that a< ( Assume

1 >, A ((4,a) |(8.89)

It implies
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I(04c 0(o,±j'\ 0(0, i- .J) (8.90)

Let

--, i A (8.91)

ft5 C. , n 1i4 >1 (8.92)

Theorem 7.4 provides us with

Wc~Dl~,~2 ,W~'P5n~L (8.93)

which will be parametrized by its arc length. Define the

curve

P(4) W(, .AN.L) z~W(4) 0 C C(8.94)

where P(AA) is the first point to reach t2. Lemma 8.5 with

at* LJL() implies that

A 7rA4
Z.- (8.95)

where
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: -c, 11, )(8.96)

Pol (8.97)

C" [0 P ,o (8.98)

Formula (7.40) proves that for some (9 12

WC OC, 1{(dAc', %- \',-Q,. (8.99)

Hence either I d( ,,) LA(W) so

AcICA (8.100)

.//. €/ 4, # L (8.101)

or , " so Theorem 8.1 implies

I., . ( 0 ,
'41'")>(8.102)

By Theorem 3.5
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V, 121(8.103)

so

~I-I(z~nI2  'VJ(8.104)

Formulas (8.92,104) imply that

CI( 1 ie)4e (8.105)

!l(,i (~ji4J (8.106)

so by Theorem 8.1

'Ict a),AV),i~e 4f -k-(8.107)

(8.108)

which combines with (8.101,102) to bound ,1.

We still have to consider 0 (j4i ) .v when a ~(4 1 1

Theorem 3.5 implies Theorem 8.S. Thus assume
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(8.109)

For any wOONa)

In prticular £c 7JD(,A P((4,0, .-a) proves

(-( (8.111)

Theorem 4.2 implies that 6!-rfu,,,all is Lobachevski convex so

6'o Ifc, )1 C e,[ (0,b I)J 0(.6)j (8.113)

T :(8.114)

The left side inclusion of (8.86) is a corollary of

Theorem 3.5 and Lemma 7.3.
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The proof of (8.87) has been left to the interested

reader. He should at least figure out why -4a can not be

replaced by a (but it can be replaced by .K where 0.c<I. )

or f by 0 . The difference between f real and complex is

important when one is interested in \-a1, 1).

118



9. Estimation of the Conformal Distance and

the Location of Geodesics.

In the first part of this section we will estimate

p(t4,,_, by using formula (3.2) with the F bounds of (3.8).

Theorem 9.1: For any U,( LoQ

0.01< <IS (9.1)

where

d! (31 M #Ur -a Otrto, -2)1, A a)2J (9.2)

Proof: We will prove the upper inequality by construction.

Define

, 7 (V r,, ..- arj,. . j (9 g.3,l)

~j* jot(~~,~1 U-tJfl.J(9.*4)

where jr( ) is provided by Theorem 7.6. The curve

Z Q1- and is continuous because P can flip direction
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only when n(.A. For any

, , (9.6)

Let us parametrize (%, ,-1 by its arc length

O< ((,J,2) and for any function I- denote

Differention of (9.3) results in

~X(A (~ ~ i 1 *%) ?7i~ ~ 1~)(9.8)

where xrfii-) is 79's curvature at 3 and (J) is the unit

tangent at * . We have used the fact that when 3

X, 3o while when jv.Il R(3) must point inside (2.
Obviously

,9.9)
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so

IDA3:,41 5r + 1 (9.10)

which combines with 9.6 to prove that

?(,f(C, , d-

We want to bound the total curvature of ((4,tJ2). First

concentrate on the y interval

-- -(9.12)

There (9.9) implies

a -, CM-f) (9.13)

so by Theorem 7.6

Hence for any two different Y±'Xz in (9.15) either (i) i(i)
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or ([ . 1 J) is a straight line. Thus

lK~c) ?.7r L (9.16)

Also.

Sz ~ ~ L4 ~ (9.17)

0

We will divide [0, O((ksi0j into intervals of type (9.12).

Start from X(:0 . Assume that we have

There exist a unique O<4,,< &Y such that

"(dVi4j&4,S) ~4(9.19)

and it defines

> '+ + = ' , + - ', ,,)(9 .2 0 )

The procedure stops when (9.18) is violated by ,4.

(oVd Ci 4 ( Y4,t~~d (9.21)



Clearly

-7 of. ,, , (opt P 1] (9.22)

so Z (Na.,d]) is a straight line. Summing up (9.16,17) in

the intervals (Yk,YA.C we obtain

(9.23)

which combines with (9.11) to give

The lower / bound is proven by an argument slightly

reminiscent of our total curvature bound (9.23). We will

obtain " monotonically increasing from ",=o to

"Xft', d -((e,) such that

where

T (4 ,,4QJ (9.*26)

0 01 M(l (9.27)
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Def ine

(9.28)

Formula (9.25) implies that

Ypq- 4 > 1 Vt, 44(9.30)

.4 On{ X C (9.31)

By definition fmj{i 00o 1,'ja) so (9.31) proves that

A (9.32)

and formula (7.60) implies

'9 (0, Q 64 -C(9.33)
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C (9.34)

Thus for any O4.j l A4.I

cJC~ , 0, \a~l f }(9.36)

Hence r (,,!% intersects G, at some (/, PtI42,U,fL)

intersects OL at some ML and so on:

444 .4 (9.38)

where of course Ma- IA . A . Formulas (9.34,36) imply

that

4(9.39)
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qI

i!.~5m-1 (9.40)

.4j #.&.( >/+ At-PA iod(9.41)

By &'s definition

A 4(C ) 1 24 (9.42)

and we can exchange V.4, u4t, in (9.41) so

+ ( s (4,,4i 19.43)
Similarly one proves

and its , analogue. For m-O

The sequence C)(j still has to be constructed. We will

first construct another sequence Ch} . Start from /a aO

and inductively given . define 14,h to be the minimal
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t> 4. satisfying one of the four conditions

L ~ (9.47)

;41 t.-h. a (9.48)

d-, , (,F .(9.49)

where

1.4 > X0 (9.50)

are fixed numbers to be chosen later.. The symbols to the

right of each condition among (9.46-49) denote the type of

intervals (bI,1 ,) satisfying it. Clearly for E=3, 0,0

< ~: 1  2  ~ (9.51)

for

127



00,44

/A N 3:, *3 > Z <P (9.52)

and when

(±. - ' (9.53)

~, A4.tn(9.55)

Recall

1 uf 1 - (9.56)

where each Q can be an interval of any type, denotes the

initial point and multipication and exponentiation denote the

union of intervals. The string of symbols is uniquely broken

into the following substrinqs:

Ego"12 S_ _9.7



(9.58)

e * a (9.59)

IR4 L-3 4(9.60)

*Ifl (9.61)

where () is either *or blank and similarly(IJ is either

(j or blank. Each substring forms one (Y/ ,j interval.

From (9.43-45) we will derive

? 1UA# 10tj-9) -~(9.62)

and from (9.51-54)

( I - (9.63)

so summing up
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~b

arAl
where - runs over several cases which will be specified. We

will consider each of (9.57-61) in turn. The details are

unimportant but the reader should understand why our method

works for /A>,o and why a simpler breakup then (9.57-61)

would not do.

The ;'s definition does not treat ja-- in any special way

so it can be considered as an inside point. We will take no

account of the possible G interval besides adding 7 to

Let

.('i,;, '%j; /.,,., ,tk ](9.66)

and denote

1ino



(9.*67)

Then

.- (9.68)

and because of (9.9)

4, ,t (i-> ')" (9.69)

" iZ" )Z " z ') 0'1 (9.70) '

which combines with (9.25) to give

(9.71)

)V (9.72)

From now till the end of the proof we will denote

A-Ar- (973)
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Case I) breaks into two parts

z ,'-11 (9.74)

A' r (9.75)

i~fr7~y~)~(9.*77)

This lower bound is a linear fraction in I . It is positive

for !in coo so its minimum in that interval is obtained at

one of the endpoints

I =Elcm, (9.78)

* (9.79)

1b) n1
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___4 > (9.80)

and the rest is identical to case 1a) with #1 replaced by ,-

Q~ (9.81)

Denote

A% (9.82)

441 -.- ((< (9.83)

Then

C 339.84)
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I a) =

y ---- •(9.86)L

5: ~ (9.87)

3* (9.88)

f, ,(9.89)

:- 
(9.90)

* (9.91)

III_ z) . 4"( tI ' )

. j" • Co,.~.7 , (9.92)
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(9.93)

A~~(L?~-'(9.94)

and by (9.44)

4 4

(9.96)

* = (9.97)

IV) I6"

This case is very similar to III)

JPE (9.98)

* - (9.99)
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V)

: f(IAI~ (9.100)L

W____ (9.102)

1-4 1 (9.103)

obviously (9.102) is minimized at Q

* (9.104)

and it is easy to prove that (9.103) is minimized at 11*

* Fj ~ (~i1)(9.105)

Now insert
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(9.106)

IM 3.l F(9.107)

which results in

", C o 20 7(9.108)

Formula (9. ) is the simplest we could devise. A better

estimate is provided by

" '' ., -,.L Ccij) (9.109)

(44 -0) It V IdpI (9.110)

Formula (9.110) is guaranteed to be correct up to a constant

factor for every domain, is asymptotically correct for slender

domains and is hopefully reasonably accurate in general.

Besides the conformal distance p we will be interested

in r[i r(10,M) I and thus in the geodesics. It is well

known that minimizing (F jd is much easier than finding
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the minimal path of integration . Theorem 9.1's proof's

approach seems powerless to confront that problem but Theorem

8.3 comes to the rescue.

Theorem 9.7: For any (, (p fl oa

Proof: Let 'x2 be generated by the center of coardinates

"'%..h.x(e I(o (9.112)

and also normalize

=(oj,,,, - ,a (9.113)

The basic idea of the proof follows. Suppose we are given a

curve P(4 0s4 ( starting from P(O)'- . Define the

monotonically increasing domains

S~rp(;(,), (9.114)

By formula (9.6)
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AW.() O0 c, ct2. (9.115)

Define to be the f irst A4) such that JtCU,) kJ.2

.t(JC1)1 (9.116)

and there exists

5- G-LIIJJ) A1 I (9.117)

Define

When Ac()C c2 def ine ~/,.Suppose we have proven

the existence of

.Ap~~c4~) '~(9.120)

Then either ftorP so that
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.,v 4 p(9.121)

s V~ Cu~jf.S ((9.122)

or 4C so that

pc,,v, .pr<.#,pcpv)(9.123)

p p t,., f3 , ','-r', D (a, q '1]

,= q - [ ) (9.124)

and one has to bound IV- from below. When (9.120) will be

established we will assume that Wc , )

Define the curves

P-10. 0.# ;,(4lot(9.12S)I; 4C- 11f27- e (9.126)

P10.( PL(4- (9.127)
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P-1 (;f) 14o s.(9.128)

where

(9.131)

1'A

Denote

.~u ~t-..~ Aj,4~ 1(9.133)

A... 14'44 (L-t,(-z)(9.134)
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"= .(9.135)

(9.136)

and similarly use the notation P,, P. etc. We will consider

three cases.

Clearly

P (,AIV (9.137)

so there exists

(~,tyl 1 n( l -vi (9.138)

Denote the P± containing s1 by P€ etc. Theorem 8.3 and

Lema 7.7 imply that

(3t{)Iu 7 I~(t.,1 e,,r,, >IPJ~PI(9.139)

Obviously
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I,& ,,/' Ic~ 7~P~1I ''-4, , -, (9.140)

i5G e 9 C7~ , re
(9.141)

and by Theorem 7.6

e * P.+ .0 (9.143)

Altogether

(Q 4- 6 ,7I- --- (9.144)

a (9.145)

Clearly

143



a (9.146)

so there exists either

N, P f4s P )Ysi..1 (9.147)

or

Situation (9.147) has already been treated. For (9.148)

notice that there always exists

4Af I(f, D (o, 1) (9.149)

Hence there exists

Theorem 8.3 implies
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PK44 frJ1

A - 1(9.151)

and obviously

PS(1159)A 7 (9.152)

11._ ) - > ,

Clearly

4( In C A c, C *((A,v (9.153)

thus there exists either
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or

f7 $(fAIl L('0/ )A ~,..) (9.155)

(, (9.156)

P 1 (9.157)

Situation (9.154) is trivial and (9.155-157) has been covered

in II).

Inserting /1 .G ti , I.26S into (9.121-124),

(9.144,145), (9.151,152) results in the right hand side

inequality of (9.111). The left follows from

K ,,,s,,, ,. '1Opc, ,, , ,,,[r<.,,p.,,, (;.158)

Theorem 9.9: For any Av-;A!-o the curves CCtVI)

and 7(A,IL) can be parametrized by O,.,i so that
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(rql[2)('(9.159)

* (P'ff C (9.160)

I, 1" (9.161)

Sketch of proof: Normalize Dz n aaerz

by 's arc length. Divide the interval t,1 into

as in (9.46-49). Use Theorem 9.2 to determine fY and

f or each 0 s I def ine P (41 to be the piecewisc linear

interpolation in r Is arc length of

PCJ - W4AtV (9.163)

Formula (9.159) holds at the .4 's and implies (9.160) there,

but a much better C is obtainable by the construction in the

proof of Theorem 9.2. When formulas (9.159,160) are

easily extendable to all Ca, 12 and the real part of
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a,(r1 is bounded. The imaginary part is bounded at the

tA, 's by ij&'s construction and Theorem 5.4, and the bound is
extended to all f by formula (9.16). The case #-0 requires

special consideration but notice that Theorem 9.2's proof

shows that

4( C, ) ( .(, (9.164)

and the rest is similar.
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10. Perturbation and Localization Theory.

The goal of this section is to estimate the change in

conformal mapping related functions induced by changing the

domain a to Dq, with as little relience as possible on

detailed structure. Most of this section is dedicated to the

simplest conformal functon: P(V,A) where (.9--fA17. More

complicated functions such as A a" (If,) will be

considered at the end.

First we must study infinitesmal perturbations. A

smooth one satisfies

A((/. LJ2 , I o ._ jo (10.1,

We want to compute 6'-,o,A) because

44k,,, , 1P ,, - ,A (10.2)

Recall (5.21,23)

9 
(10.3)

R* DA(10.4)
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The boundary condition is approximated by

This is a Dirichlet problem in 0(,I) whose solution implies

0, -/ ire) ~ t E) (10.6)
ILT

In particular

~ (10.7)

Formula (10.7) has elegant error bounds:

Theorem 10.1: For any ort

Conjecture:

(10.9)
3 %VT Tr

This theorem is hidden in C 3 1. The conjecture is ours.

Suppose we are given 41cil and required to change 41(01:
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to L(l: fL continuously and monotomically

0 (4Z,(10.10)

The simplest way to do it is Loewner's method. Let the Jordan

curve Po c a\12 connect 01A to S and def ine

p. P,, ) (10.11)

Let P be parametrized as PrII os,4$! and define

&aph, -r 41\ P( C;( Ii (10.12)

The change from to &214) is infinitesmal though not

smooth. It turns out that (10.6) still holds with i(9) a

delta function

EjlG-J " + (10.13)

A', 0 ~,G~2(10.14)

(10.15)
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The proof is simple. Clearly

.Aocjtc Oro, i (10.16)

AO =- D (of 1) \ e F e rrbl t O1 (10.17)

The harmonic function from (10.3) satisfies

R, CQ - 0 0.o, ,) (10.18)

VTc c- - 4 ,, o(7O,t (10.19)

1

The Dirichlet problem in to is exactly solvable and yields

(10.13). Pormulas (10.13) and (10.2) for £2&"-ii,.2(k)

combine to

f(Urij JCO 67. ) (10.20)

We have not insisted on any fixed { direction such as
Z (0 ff, 11)s>0 so we can and will choose

rr,: -0 (10.21)
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Of course (10.21) implies an added rotation to (1.10), but we

will not use them together.

The worst obsticle to the use of Theorem 1.2 to bound

F(R.iv-I from below is the requirement that the comparison

domain A(Z must contain every part of 12 no matter how far and

insignificant. The following argument shows a way to throw

out something.

Theorem 10.2: Suppose that (Or-Ri1 IC2 - where the

domains are possibly multisheeted. Then

______________-_ <_ ( CP X - . (10.22)

The inequality is sharp.

Proof: Let us continuously change ft3) z -. to 11R)Qz by

Ldewner's method. Differentiating (10.20) with respect to 4

results in

-- 1 (10.23)

Inserting 44:4 proves

~f LP Fl~ 15o- (10.24)
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and for (c~~,I,6 ,ld e

(t~it go I t --I e f (10.25)

Clearly

( (10.27)

thus

la 14 1 J11. -4211ft U4 a FN (10.28)

Integration between t-O and r- results in (10.22).

Equality holds iff

( ( O f) D LN fC, i1 (10.29)

In practice is not worth the trouble

to estimate. Even when it is ignored formula (10.22) is an

excellent bound when is connected i.e. we extend

-at only at one location (later we will see how to handle
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several locations). For example let DLbe a rectangle

f (-Ord),YI 1 (10.30)

and letiQ be its extension into C when the edge rA~,-x~'i]1

is erased

(10.31)

Then for ot>,

F (o,.)-- P 4 ) (10.32)

I(P,-fri-f,i], 0,D)-, 2&el (10.33)

and Theorem 10.2 implies

Tr(-e )~O.?UL(rZ (10.34)

which is a very tight bound even for moderate C. The correct

value is

(o (10.35)



The extension 11\l has a large area but little effect on

/F~, ") • Moreover most of the effect results from the part of

near the edge 0kt'(-4,±) . For instance

AP (10.36)

The mere knowledge of r(f.% 1) determines F(O,-a) up to

a factor of 2. How much more would we learn by exsamining

Z)SL's part near 4) in more detail? Combining Theorems 10.2

and 8.1 we obtain a localization theorem:

Corollary 10.3: For any (9.-l >o- ,. o

(10.37)

Coniecture

(10.38)

Our maximal F change bound is off by at most a factor of

2.

Before proceeding any further we must make some

definitions. Let A be a set of d disks each of which has a

specified center even if it equals allQ. A subset 8 cA is

lee



called a 1Acore of A ,denoted by

8 T(Aj( (10.39)

.Iff

V' (10.41)

where fiQ

Lemma 10.4: For any nonempty com pact set of 02. disks

A and O 4 sj

7YA,,i #{]~(10.42)

Proo: Define a R(~-rA,) inductively by

B() i),A (tCo , a jc~ A A~ (10.43)

where Dm(A)FPA maximizes the radius.
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Notice that a division of (9.46-49)'s general type for

moderate ',9 is provided by anyZ>0 core of

Suppose that <9d-nff. Define the perturbation boundary

4-4I ~r'(QU&t \ ILI nIM (10.44)

Define the reduced perturbation boundary by imposing a disk

condition in

(t4A oi 7q (ft) w,' 7c10.45)

where the perturbation radius at & is

A(0, 1 S -, A C4, (10.46)

Notice that the condition inside (10.45) is automatically

satisfied for any a . Our results will not be

affected by imposing an extra disk condition in 1I or

replacing (10.45) by a cone condition. For each

define the perturbation size
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f-(((pa ,(F,-.) 0 SA15 (10.48)

and the perturbation disk

A (miOiff Do((A ,& (1w, 4( t2~~f (10.49)

The relative F perturbation is

, (0, 1 (10.50)

Theorem 10.5: For any /0 ,0 ,

I&UXA 4M4 jj-i (10. 51)

where -m is any

,i(a (~.i&1I£P~I,& (10.52)

Moreover when .Ocf or .fc_

IAP (,cA,.' l , " (10.53)
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Proof: Clearly ,LA41 .We will prove Theorem 10. 5 for f~~lor

ic'.and obtain the general result in the following way. For

any

rl (10.54)

~ CJ (10.55)

Hence

71'Ti uTz. (10.56)

STC.OQv 1f,lt) IA r. %(4,4a4i (10.57)

T-oTf( 46xrIt TI

..............



where

(10.59)

Theorem 10.5 applied to £&O ,_( c~ii results in

4 C (10.60)

I,,(L<,O.,.cI -( , (10.61)

obviously for any (A~(,.L1 C~)' i

CI('A, (10.62) rT,

at', 40; .(T all ff,, . (10.63)

and the general Theorem follows.

Assume that Ja.)-. and define

A.'a f( , ,2) (10.64)

Obviously
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FW,. flo (10.65)

Let

3T p-fJi 011]1'l~ (10. 67)

We will prove that

cl hIJ1QJC I ( 4P ) (10.68)

Denote

T= j/, -4~~, o~ ) ;, (10.69)

The upper bound on I-F (OJL) is obvious:
~i-I
p o, mt . /)

ill" JF~o,o~\ w~ir1

~~~4r'T P b,(,vO2 CA,)) -IA, (10.70)

and
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T (10.72)

The lower bound is a bit tricky. Replace Cp 1  by any

finite subset thereof and arrange it monotonically

nondecreasing in nr

(10.73)

and define

b1 -~j ~,~ 1  1 (,1 (10.74)

Then

-1 66,' 4A) 7r ~ AA7

JOI F (0 4* O, 1)fo 1 & ( ,i ILA)J

$?I Pr*Q1 (.10.75)

where
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(-,AI) t4,4Aj(10.76)

p T (O

(10.77)

P- ' '

Clearly

~ ) (10.78)

so by Theorem 3.3

(10.79)

where

'CJ'j(10.80)

rormulas (10.75,79,80) combine to prove 
the leftmost

inequality of (10.68).

We will transform (10.68) to f. For any j there

,,ists *ie T'"\T' such that

(10.81)

C tA



Theorem 3.5 implies that

nJ 4 J 16 iI, -, 1,-1 (10.82)

which proves the upper bound. Moreover for any f4 6

Jj4 0, 11,1TJ) rA ((.1V'fl 1  4o, 1 (10.83)

and

S ''(10.84)

where -

CC~ t4)~i~~r((~1 (10.85)

Thus

which proves the lower bound.

Now assume' that lC-fC. Define

- n (10.87)

165-- -



the construction of (10.66) is too crude for this case. We

claim that either

(O, A) 4 . (10.88)

or

'J.\' ('o,1J el ( / t (10.89)

where

A fdC1 1 .y 1OC1 ~ 1)~~

'3 7jif- 1DI'j 1.'(3  t()j,J()1IA (10.90)

Suppose that nJ(0A) " For any .O) define

to be the first 0<' < such that .. DC(l4 ) J1,. . Hence

4-l r z=)=(1.91)

and there exists

3 c. L OrA A, n ) (10'.92)

I t is easy to prove that
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which proves (10.90). In case (10.88) set T-f'd 1 ,4Ar;)13

where maximizes rQI . In case (10.89) set T:T(A) . In

both cases the proof of theorem 10.5 proceeds as before. The

relations between (10.45), (10.90) and the rest of the proof

are the following. In order to prove (10.83) (for Qcff ) one

needs (10.90). The area argument in (10.86) necessitates

(10.45) and once (10.45) is imposed formula (10.81) relies on

(10.90).

Formula (10.51) indicates that the perturbation can be

broken into basic parts and that up to a constant their

effects simply sum up. This should not be misinterpreted to

mean that there is not much interaction between the parts.

For instance, in Fig. 10.1 adding ti toX has far less

effect than adding 4 . to R 0 4j.

Theorem 10.5 estimates AF as accurately as can be

reasonably expected except that the lower bound may be

extended to one which is valid in general, though it may be

in many cases because we know the amplitudes of the positive

and negative contributions only up to a multiplicativi

constant. The detailed It structure has not been completely

eliminated: .&LI')" appears in (10.52). Still it is remarkable
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that we have gotten even that close. The 74(o) partDd(tl T6

corresponding to ( Ac-Z1 can be replaced by

f rdAai (10.94)

which is similar to the infinitesimal formula (10.6). The

rest of the sum has a similar upper but not lower bound.

THe rightmost bound of /JF/ in (10.51) follows from a

fraction of the complete proof.

Define the maximal external curvature of

relative to 0 to be

where )(C, (',) denotes 5,C')'s curvature at M which is

positive (negative) when (5i (") is locally convex (concave).

Inserting the 4AV which minimizes I4-0) proves that

(0,1,01 1 >, - 1 (10.96)

Theorem 10.6: For any VoaA.[ IF -a
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~1~'~,.l~tl rd 0 ,, i ,, m , 3

Proof: It is sufficient to prove (10.97) for because

then it applies to ((9l,&L) c-0 -Qtca.[ and

d(o .0 )l. dr .u. v 1 (10.98)

-n(1.lt CA (0C, S 1 (10.99)

Thus assume that OC17. Let fA ,. (4, ) maximize

.(fAU ,_a,.A) and denote Vt- PrA of (10.45). Theorem 10.5

implies that

4 F 1 Cd 15 E(10.100)

Normalize

d!A ... 6(10.101)

____ ____ __ _ ___169



Let A,(3 be the first, if any, P(M ,ft.Jl points in
-a f3), 001(, -L SL respectively. Clearly

(10.102)

Suppose that

3" A4 - (10.103)

Then for any e A Of ,-N-, _ot )

K 4 - < (10.104)

Thus for any Vc 00(UA

1310 (01r C C\O(A-kK P% ) (10.105)

where A is the inside normal to at @4. Corollary 10.3

implies that

-- 2,)- VA(IIZ I -K (10.106)
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Hence

,, JL7. ,.

Together with (10.102)

n -, C "  (10.109)

Similarly

(10.110)

Formulas (10.100,109,110) prove (10.97).

When K is not available Theorem 10.6 degenerates into

fII C (j j -f.. 1 (10.111)

where

" 4,.flXFff d'Cpv ,IC (10.112)

will be called the directed distance from 12 to relative to
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. To get an idea about how 0 behaves consider the four

cases in Fig. 10.2.

Localization is a special kind of perturbation so Theorem

10.6 is applicable to the situation of Corollary 10.3 and

implies that for any ? I

which is inferior to the bound obtained there.

For moderate / the bound (10.97) is linear inc . When

is large it is proportional toNW . Can that happen to

JiAFI ? The simplest nonlinear a- dependence occures for an

internal corner such as

\ -,t (10.114)

It is perturbed to

A X\V 00e4L", C7(4U 1 Ljq (10.115)

The magnitude of l(C ,?)I is provided by Theorem 10.5.

Let us consider only the part of O near (-1,0) • In this

case a T, is easily chosen to consist of 5 disks whose
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W

____ 
(10.116)

Thus

>/f c rl' 1.117)

A similar upper bound holds.

The previous example shows a nonlinear G- dependence, but

the nonlinearity is extremely tame. So let us add more

external curvaturel The star fL C\ 1 - e Ll-b l is a

dismal failure. However, the fractel in Fig. 10.3 succeeds

when Pt is large enough.

Theorem 10.7: There exists a domain i and a Cr-(a such

that for any 0<0'1 there exists a -LcfL such that

(10.118)

4 P I > C o", (10.119)

< "1 (10.120)
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where V is constant.

Proof: Define

C - Pj (10.121)
j ,o

where

P= PO V-, { ) (10.122)

P:-Pou (I u (,'e" iPs-,) lO.123)
4,..bt 2..--- i

where fL will be specified. Define

.1'-C \ ( (10.124)

Obviously

o-! ,Di, c C,' (10.125)

Theorem 10.5 implies that

AF(!I, -0, C. -1. (10.126)
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where i is the set of (Pi\ Pj.L) t' connected componets.

We have lumped together opposite parts of j for notational

simplicity. The equivalence of aj((/i to djw, m is

obvious. Theorem 3.4's physical interpretation is intuitively

useful. In its terms Q was designed to compress the charge

lines.

Each Wo TI'-t intersects 2,- Z /2 7 which will be labled

U/, .. We claim that

ca(,0,D J >, j C (W,y, -2 .i). Cu(C, ,Q) (10.127)

where

I ,t \L,.-'d(W-i, (10.128)

W- is the center of the interval 'V and A is its tangent so

that 65 is well inside P" in W 's scale. The proof relies

on w's perturbation theory which will be outlined later in

this section. Formula (10.127) is obtained in three steps.

First for any two infinitesimal ,9
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I

II

C (10.130)

second a localized result

4(d ,.71 0', -a; , )r ' 7  .(0i (10.131)

.and third

0h .1 ' W, O, & L i) (10.132)

Formula (10.127) implies

.. 133)

where

/4 e v(/A ) (10.134)

is independent of J or W. It is easy to show that as in

(10.117)

. (10.135)

By induction
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V : I- 1 j t -(10.137)

Conjecture 10.8: For any 0f12.' {L ACf

fA~i1 Q.- C a- C U (10.138)

V I C (10.139)

It is time to consider other 6 related functions besides

. There seems to be only one other independent

monotone function: ?fn,..-4. The conformal distance function

*contains" the harmonic measure function because for any

WU having an inside unit normal

"a~'w ,. .,, M (10.140)

More generally we know that 1 ,l! and PWU) determine
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A third basic function is A-P1  f-vet) where

0) ~' )>O0 Together with pru1Qi it determines 6rvI,
and alone it determines it A f ,Q) because

AAy vas,iN,vr A1 ((41~ - (0441 -# T (10.141)

For completeness we will also consider -a.,

The entire P perturbation theory except of Theorem 10.1

is generalizable to the above mentioned functions. Of course

the nonotonicity dependent upper bound of Theorem 10.2 and

lower bound of Theorem 10.5 generalize only for /. There is

no point in going over all our previous results so let us see

what happens to the most detailed one, Theorem 10.5. For any

(4, , (t,-, l Cft define the reduced perturbation

boundary

,,,,~, ,,_f)- (I * - (10.142)

Notice that 4 ,,) 06 (4) 11,Z) only when the

perturbation is so large that it can hardly be called a

perturbatin, a case which will be excluded. Define the

perturbation size at .*i(.,QAul) to be

8(10.143)
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Theorem 10.5': Suppose that c,(.0., P ,,.L.c.t

O k null and

.~ J ,44 u, , ?j. C (10.144)

then

/)(~t~)f"I~CC ~ Z ~4,(,).. (10.145)

~7 d4 '~".c;-Q1.f) ~ Li)(10.146)

and for any n1,±

.~ ~ ~ 9~~~,fl,1L)(10. 147)

where T& is as specified in Theorem 10.5 and
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A
t~f~O/s) ZV art, .v~f~ (10. 149)

Moreover when -.c 1 or ."ILcS the reverse of inequality

(10.145) holds with a different constant.

Under the previous assumptions for any )7,0

744,a)

411

(~ti~.Oi~I~ C2 4  WiA'u1 I (10.152)
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[AA J0,C S"2[.4 fdfsp,'4Vf.wi,,(- (10.153)

Condition (10.144) is the weakest reasonable formulation

of the statement: is a perturbation of .L relative to (,v

of relative size less then C • When (10.144) is violated for

IA&(.p the upper bound of Theorem 10.5 is useless. Notice that

when wcZJ both nft) and d(s,) are 0 but they cancel

each other as in (10.151). The Jl(Q,*' in (10.147) implies

that A ( c41t &, is mainly affected by 4j' s near

64 . In contrast b1 6rUQ) is mainly affected by W 's near

a. A more direct way to se these facts is to combine

localization theory with Theorem 5.1. Each of the j indexed
terms in (10.147) bounds the change in the real and imaginary

parts ot the generalizations of (5.21,22).

The single most striking fact about formula (10.147) is

that it disregards the smoothness of the perturbation. The

situation is analogous to the following. We want to compute

an integral transform in v4cS whose integration variable is

WE 71. The kernel is singular at u-kv .gi2 and we know only

the order of magnitude PA~(W of the transformed function and

its sign. Formula (10.147) is the best possible under these

circumstances. The reverse of inequality (10.145) holds with

a different constant when SLCJ)f or Acil because then the

181.



integrand is of a fixed sign. a great amount of cancelation

occures when ( is near /a, most of the contribution to the

sum comes from W's immediate neighborhood and the

perturbation is smooth. In that situation (10.147) is of

little use.
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11. Numerical Conformal Maopping.

suppose that we are given a simply connected domain i~

in the easiest to simulate incompressible fluid problemes

is periodic so it can be scaled and rotated to satisfy4

Il.2T Q.(1)

~C (,'to (-4)C L (11.2)

which will be assumed from now on. we want to conformally map

It onto the half plane Of-41. Let us parametrize 7f.by

-e'coo' as

1L(1.3

, (11.4)

Several parametrizations desined to resolve -OQ will be given

later. Define

ecis fl.2yl (11.L)
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The functions ;-OL -e0 are analytic in e and bounded at

-4 (compare with (5.21,22)) so

c (11.6)

i14) a q =  (11.7)

where .1 is the identity transform and 14 is the Hilbert

transform

%2.

Manikoff and Zemack 1 10 1 took the imaginary part of (11.6)

J,,, qr, .c (11.9)

and rewrote (11.8) as

e'~i-e(itHY ( yo)VYWI (11.10)

where t4x is the hilbert transform in ) . Actually they have

used different notation and have parametrized Y-' RI. Anyway

when I is specified (11.9,10) is a nonlinear integral

equation in 9 . Notice that it is well behaved even when e
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is an extreme contraction of Y. Manikoff and Zemack

numerically approximated (11.9,10) and solved it by Newton

iterations where an A/ point approximation requires C9flV/

memory locations and o9A') operations per iteration.

The MZ method has another fault, minor incomparison to

the &(A/t] storage. The numerical separation of H into /4x

and 1-1-x may strongly increase the influence of (Y'! on

%j4%#(),. We consider the D derivative of H(A -zl

because the shape of rl. near IN) does not depend on an

additive constant. Moreover foz any harmonic function

where Z is I's derivative in the inner normal direction.

Clearly

0 '2.

so YNCI) 's influence on is proportional to

j t' -r G6 - (11.13)

which can be much smaller then the influence of ?('')

on "a/4 *(x) In other words the MZ method is not

conformally local. That holds with venagence for vortex

185



methods.

Like the previous approach, our scheme is a perturbation

method, but it is explicit. Soppose that we have the

functions 9,9 and want to perturbe 1Z onto A. For time

dependent domains 10 ) the perturbation is infinitesmal and

one may write v> p c f4 as

X (11.14)

where A is the velocity and 0, is the substatial derivative.

We willadjust -J-'s scalling by

~ (11.15)

When iterating towards fixed one simply defines

(11.16)

where 0 is arbitrary, and performs Euler time stepping on

(11.14) and and other equations. The well known formula

(10.6) can be written as

N At U - iko (11 .17)

It can not be used directly because where e croweds 6 can
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be larger than 9 by many orders of magnitude. Our first

numerical observation has been that when (11.17) is

differetiated by e it gives

which is well behaved even for complicated domains. We were

led to (11.18) by the theoretical observation that L A14)
and not PA) is the correct function to consider.

Notice that as far as A's shape is concerned Z's

tangential component .4,(A,, 4! 1 is arbitrary. However it

is numerically advantagious for it to be derived from either

the physical velocity or (11.16) so that singularities move at

velocity A. That advantage is realized by replacing 4(X')

inside the square brackets of (11.18) with A -x)- Xrx
Notice the improvement near a corneror for a small scale

structure on which most of . is translation. The modified

(11.18) is locally translation invarient.

It is time to list our conformally local numerical

implementation. We will choose ,.(y,/') from (11.15) to be a

sum of delta functions in the time so that within each time

step j:Q and at its end the scalling is reset abruptly

without any time stepping errors. All the functions etc.
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will be computed at the Al points

and for an arbitrary function of )e we will denote

(11.20)

We time march the TA&.I variables

where

At,~ ~ tqde'% 0 (11.22)

ZI, ¢ = , - (11.23)

by

01V b~ (11.24)

8 (11.25)



!

where the constant C is determined by

The imaginary part of is constructed by

ix,- (,A, -eDx, - fw (11.28)

The numerical 7 1,4UI of nice functions I, and 7a

are

q., V/' 7-'

4 ',, , '

, -(11.30)
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f4I

7.

2..

. , - )qjt",iGt k, , ,-,,a(-L , 2(11.32)

Formulas (11.29-32) are conformally local and are accurate to

an infinite order in . See the Appendix about (11.29).

At the end of each time step a rescalling is done.

Suppose that

Y4 -(11.33)

Then
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2. (11.34)

,10,.

The points Y4 are specifiedby some scaling formula. For

instance

(0. - J- (JZA-x(11.35)

where

0 f1A, V C (11.36)

are constants and V* is a smoothing operation. The constant

is determined by

av X4 = L1 11.37)

Notice that (11.35) is constructed so that ' is not much

dependent on ) • Particular choices are ,Mr- where 'n

approxiimates a constant times ".al'a arc length and ?%, S-

where -C 1's density is approxmetely proportional to -J's
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curvature when it is large.

For incompressible irotational flow problems the velocity

is determined by

?-4414(11.38)

where the potential function 0 evolves according to

O - I(l.39)

Our numerical method (11.19-39) has not been implemented

yet. An early version based on (11.7) and (11.18) with the

standard spectral Z has been programed. It did very well

on time dependent domains where . was given aperiori,

including a saw teeth domain. However when applied to the

Rayleigh-Taylor instability it developed an explosive

numerical instability when the spike's tip resolution became

poor. The same behaviour has been shown by the Manikoff

Zemack method and the vortex method but the vortex method

blows up at a later time than the 1Z method, and (11.18)

performs similarly to 1Z with much fewer memory locations and

operations. We hope that (11.19-39) will do better. At worst

it is flexiable enough to be modifiable into something better.

Conformal locality will be certainly usefull in truely

complicated problems, when we do not want a poorly resolved
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part of to contaminate others.

We still have two points to mention. One is the

neccesity for specifying the center C of the conformal map.

The conformal mapping is used only to compute by (11.11),

and it is center independent. The choice 0--o in (11.5) is

highly natural because of (11.2), but can it be avoided in

general? The Schwazian derivative

( x L(11.40)

is center independent, but we do not see any good comming out

of it.

What about muliconnected domains? The standard

cannonical domains have corners but the following choice of a

cannonical n connected domain

(11.41)

'R "ae," 0 d ji 0 (11.42)

is smooth and treats all ZAL's components on similar footing.

Bowever the Poisson kernel depends on 2 real variables for

doubly connected domains, 4 for M-3 and ?'-C for '1),. One

way of computing the kernel for mr*I is to forget (11.41) and

I
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replace fl by its multisheeted cover Lt. Numerically only a

finite number of sheets can be considered. In order to reach

accuracy one has to take CM!l sheets. These sheets

contain Ncr l, points for ei-z and an order of

WM) 4 (A- 1 (11.43)

points for #",. This is unacceptable for H,, . One can of

coarse make '-2 cuts in the domain and solve a M/A system of

equations where AA is the number of points on the cuts.
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Appendix: Spectral Multiscaled Integration.

Pormula (11.29) has been desined to be spectral (i.e. of

an infinite order of accuracy in L ) and conformally local.

In detail, suppose that we purturbe 4ve, by a relative amount

44-9,0 .*4 A 040 P a (A.2)

1:9,(4, e (

Then the effect transmited to ye4  by (1.29) is

which agrees with (11.13) up to the hidden unavoidable factor

of At.

formula (11.29) takes 9(A/ll) operations to compute

versus ogr~t-A ,j operations for the usual spectral , , but

the laterts useless for multiscaled 0. Now let us replace

(A.4) by the weakest acceptable requirment

a. I



+, (A.5)

which is not conformally local, but still works. We now pose

a question: What is the fastest scheme to acheive (A.5)? The

first natural try is

-4 - -V6PL e(A. 6)

0 (A.7)

but it violates (A.5) for multiscaled e

We will now construct a spectral multiscaled method of

integrating Z, to . It can be iterated to compute

differetation, but it is as valueable in its own right.

Define the functions

W) N/(A.8)

Then clearly

a(A.9)
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#~J''~ j~$q~. e'~~](J4i 7(A. 1.0)

and - is a. nice function sa. .J"(ji 44i can be computed

from inL the usual spectral1 way. Thus it takes

e(2VN.L Al operations do derive Z from (J). Obviously

can be computed by a 14 points Gaussian integration if

T), A {( (A.12)

We assume that

"TO <<: /VA~4

The total number of operations is

An 0 (T ) I~ (A.15)

and assuming one dominant wave number the accuracy E has the
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controlling factor

(A. 16)

Hence optimaly

ZVI W0 (A.18)

We do not have any non iterative differentiation method of

type (A.1O) or a non iterative integration method of type

(11.29). Moreover (A.9-11) is unlikly to be the last word in

efficiency.
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Index of Notation

The following notation is used throughout this thesis.

However we could not resist using some of the letters (such as

ad.Gd ,; ) for other purposes which are specified on

location. Sometimes functions are abbreviated by dropping

some of their last arguments, for example , to

Am; or even d. We may olso drop a middle argument by

replacing it with a 0. In all such cases the missing

argument's value is the one most recently listed inside the

same function with the same specified arguments. The letter c

with or without indices denotes a constant. No connection is

assumed between two C is in the same formula, not to mention

adjacent lines.

C Complex plane

Comlex plane with infinity

Empty set

RC Closure of the set in

Open of the set

Open interval between 6i and

where ,
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F T , , .. . . .. ... ." iI .... i 
' 

T. . . ... . .ii'ILI- ..

P f(4(, I P, (~

C-ON ( }P, Connected components of the set

9 intersecting the set A

Q,41 , where t4 is a point

i .. Boundary of R in

(2.1) Conformal boundary

(10.44) Perturbation boundary

(10.45) Reduced perturbation boundary

(41,, , (10.142)

Partial Derivative with respect

to the j'th argument

D44 (0.14) where 4A is complex

A (3.19) Cover domain

Te'"(4A, .(3.20) Cover map

ato1 ..C-a (3.9) Minimal radius of nl at 4-

Y1C4,Q,.rL) (10.46) Perturbation radius

(4, to, P(5.29) Angle change of a curve P from

4A to V where ,( -/P

( ,WP) Curvature of the curve P at IA

K(, .,.q. (10.95)

o- (f, _a -1) (10.112)

slender (0.4,5)
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E conjugation (0.19,20)

d(QQflj (7.1) Internal Euclidian distance

4O(4, (1, 1L (7.84)

O(O The half plane

W, a) Disk

rJO., 1,- (7.10) ( disk

Oo(ta,-fl) (7.86) d0 disk

a ((f ,,6) (10.49) Perturbation disk

&V, , -a 1 (7.52) bottleneck's width

Af, ( , It, -Q. (9.2)

A (WI , 441 Ul (7.73,74)

2(4, v,-a 1(7.1) Line of least Euclidian distance

connecting MA and 0 in -.

P(t4,j4,tLi (1.6) Geodesic

c (f,1 e, -a I Continuation of beyond and

Tr (0, IV, -a I Total geodesic .P Cr

((4 1 ,111 Conformal mapping function

Ic(t, -ll (1.5) Conformal metric scalar

1 ru,v,aLJ (1.6) Conformal metric

11W (IVA) (3.5)

VQ .(3.23,24) Capacity

&J (W, 4,-l. (1.25) Harmonic measure

0W , 42(6.1) Modified harmonic measure

S((Af, 4 I(1.7)

(c/o V, - I) (6.2)
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(6.6)

VI)(6.2) Extremal length

X(vV,.Il (6.12)

(YA 1(8.85)

~ (10.47,48) Perturbation size

46(&,,I4Ia 11) (10.143) Generelized perturbation size

4F(, -, f )(10.50) Relative F perturbatin size

T(A1A)(10.39-41) 1Acore of A
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